

série

DF-47

Difusores rectangulares de longo alcance

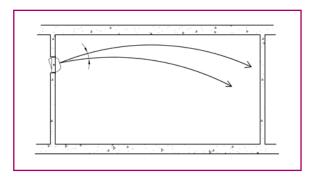
www.koolair.com

DF-47

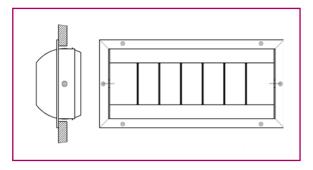
1

ÍNDICE

Difusor rectangular DF-47	2
Dimensões	3
Quadro de selecção	4
Gráficos de selecção e correcção	5
Simbologia	14



Difusor rectangular DF-47


Descrição

O difusor rectangular de longo alcance, modelo DF-47 é totalmente fabricado em alumínio anodizado na sua cor natural. É constituído por um tambor que permite a rotação para a orientação vertical do fluxo do ar num ângulo de ± 20° e dispõe de pás deflectoras que permitem a distribuição horizontal em leque ou concentrando o fluxo de ar no sentido que se pretenda.

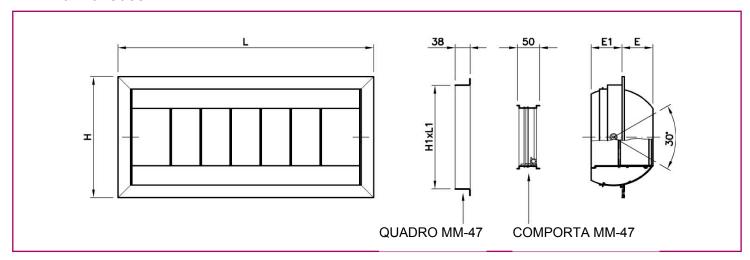
Utilização

Estes difusores de longo alcance e grande caudal são muito apropriados para os casos em que se pretenda tanto lançar um jacto de ar à distância como abri-lo em leque. São especialmente indicados para polidesportivos, naves industriais, salas com ambiente controlado, estúdios de gravação, discotecas, grandes locais, etc...

Acessórios e montagem

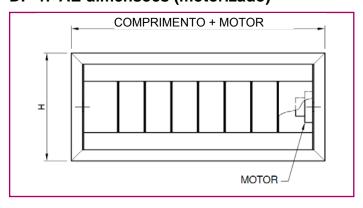
As dimensões correspondem à dimensão do orifício. A montagem é realizada sempre com parafusos, seja directamente sobre o paramento, ou utilizando o suporte de montagem MM-47. Estão igualmente disponíveis conjuntos de regulação, 29-O-47, acessíveis com uma chave de fendas pela frente do difusor. Ver quadros de dimensões da pág. 3.

Difusor rectangular de longo alcance, accionamento manual.
Difusor rectangular de longo alcance, accionamento manual adaptável a conduta circular.
Cinco tamanhos (ver página 5).
Comporta de regulação.
Quadro de montagem.
Accionamento motorizado.
Auto-regulável termicamente


Identificação

Os difusores são orientados manualmente adaptando o fluxo do ar às necessidades do local. Na versão AE, dispõem de um motor que muda a direcção do ar (para cima ou para baixo) para utilização com ar frio ou quente (Verão ou Inverno), este motor poderá ser proporcional ou tudo-nada (2 posições).

Difusor rectangular DF-47


DF-47 dimensões

DF-47 dimensões

TAMANHO	L	н	FURO L1 x H1						Ε	E1
DF-47-23	348	210	305	165	43	58				
DF-47-26	652	210	610	165	43	58				
DF-47-36	652	310	610	267	79	79				
DF-47-312	1262	310	1219	267	79	79				
DF-47-410	1110	422	1067	380	117	102				

DF-47-AE dimensões (motorizado)

A versão AE, accionamento motorizado, tem um maior comprimento para incorporar o servomotor. A versão CC, construída para adaptar directamente a conduta circular, pode igualmente ser motorizada (AE). Os difusores são orientáveis com rotação relativamente ao eixo de simetria horizontal ± 20°.

Quadro de selecção DF-47

Q		Tamanho	305x165		610x165		5	610x267			1219x267			1067x380			
(m³/h)	(l/s)	$A_k (m^2)$		0,0198		0,0383			0,0613			0,1213			0,1508		
150	41,7	V _k (m/s)		2,1													
		$X_{0,3} X_{0,5} X_{1,0}$ (m)	4,6	2,7	1,4												
		∆P _t (Pa)		3													
		L _{wA} - dB(A)		<15													
300	83,3	V _k (m/s)		4,2			2,2										
		$X_{0,3} X_{0,5} X_{1,0}$ (m)	9,1	5,5	2,7	6,6	3,9	2,0									
		∆P _t (Pa)		10			3										
		L _{wA} - dB(A)		<15			<15										
450	125,0	V _k (m/s)		6,3			3,3			2,0							
		$X_{0,3} X_{0,5} X_{1,0}$ (m)	13,7	8,2	4,1	9,8	5,9	3,0	6,5	3,9	2,0						
		∆P _t (Pa)		24			6			2							
		L _{wA} - dB(A)		27			<15			<15							
600	166,7	V _k (m/s)		8,4			4,3			2,7							
		$X_{0,3} X_{0,5} X_{1,0}$ (m)	18,3	11,0	5,5	13,1	7,9	3,9	8,7	5,2	2,6						
		∆P _t (Pa)		42			11			4							
		L _{wA} - dB(A)		36			18			<15							
800	222,2	V _k (m/s)		11,2			5,8			3,6			1,8				
		$X_{0,3} X_{0,5} X_{1,0}$ (m)	24,4	14,6	7,3	17,5	10,5	5,2	11,6	7,0	3,5	8,3	5,0	2,5			
		∆P _t (Pa)		74			20			8			2				
		L _{wA} - dB(A)		45			27			<15			<15				
1000	277,8	V _k (m/s)		14,1			7,2			4,5			2,3			1,8	
		$X_{0,3} X_{0,5} X_{1,0}$ (m)	>30	18,3	9,1	21,9	13,1	6,6	14,5	8,7	4,4	10,3	6,2	3,1	7,5	4,5	2,2
		∆P _t (Pa)		116			31			12			3			2	
		L _{wA} - dB(A)		52			34			22			<15			<15	
2000	555,6	V _k (m/s)					14,5			9,1			4,6			3,7	
		$X_{0,3} X_{0,5} X_{1,0}$ (m)				>30	26,2	13,1	29,0	17,4	8,7	20,6		6,2	15,0	9,0	4,5
		∆P _t (Pa)					123			48			12			8	
		L _{wA} - dB(A)					56			43			25			19	
3000	833,3	V _k (m/s)								13,6			6,9			5,5	
		$X_{0,3} X_{0,5} X_{1,0}$ (m)							>30	26,1	13,1	>30	18,6	9,3	22,4	13,5	6,7
		∆P _t (Pa)								107			27			18	
		L _{wA} - dB(A)								56			38			32	
5000	1388,9	V _k (m/s)											11,5			9,2	
		$X_{0,3} X_{0,5} X_{1,0}$ (m)										>30		15,5	>30	22,4	11,2
		∆P _t (Pa)											76			49	
		L _{wA} - dB(A)											54			48	
6000	1666,7	V _k (m/s)														11,1	
		$X_{0,3} X_{0,5} X_{1,0}$ (m)													>30	26,9	13,5
		∆P _t (Pa)														71	
		L _{wA} - dB(A)														54	
7000	1944,4	V _k (m/s)														12,9	
		$X_{0,3} X_{0,5} X_{1,0}$ (m)													>30		15,7
		∆P _t (Pa)														96	
		L _{wA} - dB(A)							<u> </u>							59	

Notas

- Este quadro de selecção é baseado em ensaios de laboratório de acordo com as normas ISO 5219 (UNE 100.710) e ISO 5135 e 3741.
- O Δt é igual a 0°C (ar isotérmico).
- O comportamento do jacto de ar com diferentes $\Delta t,$ em gráficos posteriores.

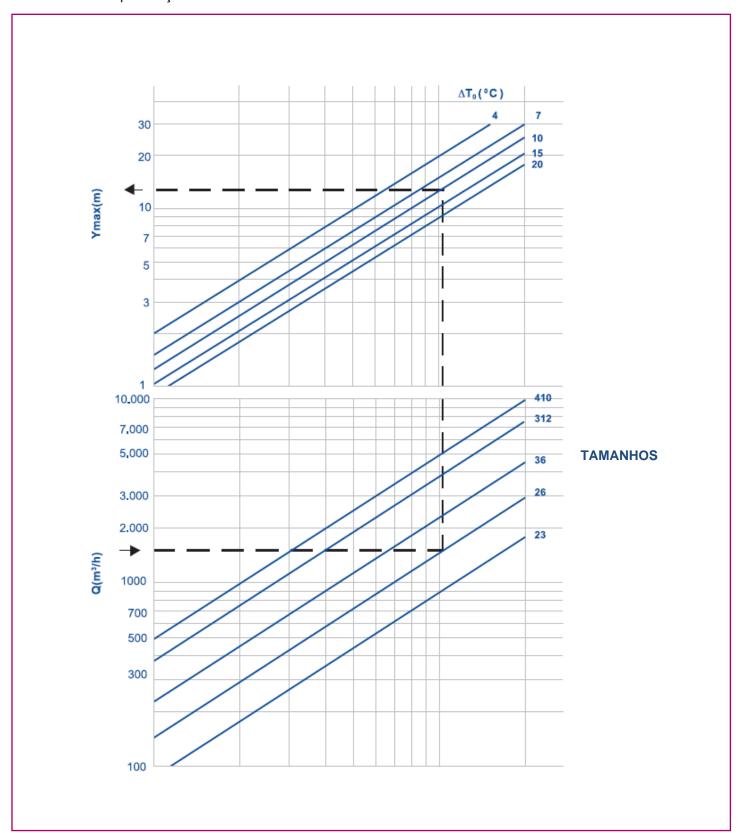
Simbologia

Q = Caudal de ar

V_K = Velocidade efectiva

A_K = Área efectiva

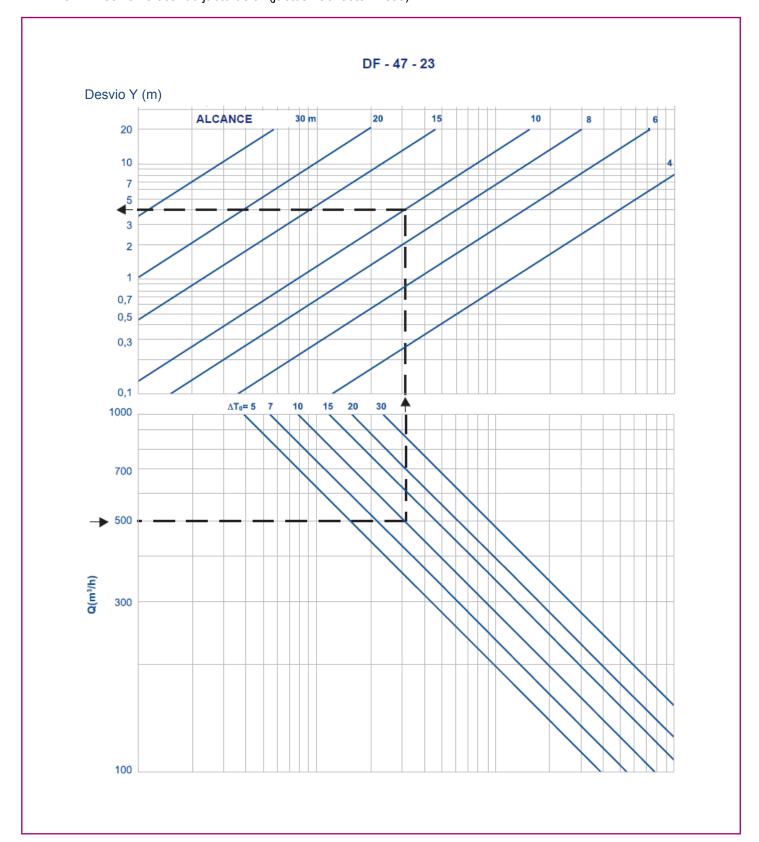
 ΔP_t = Perda de carga total


L_{wA} = Potência sonora

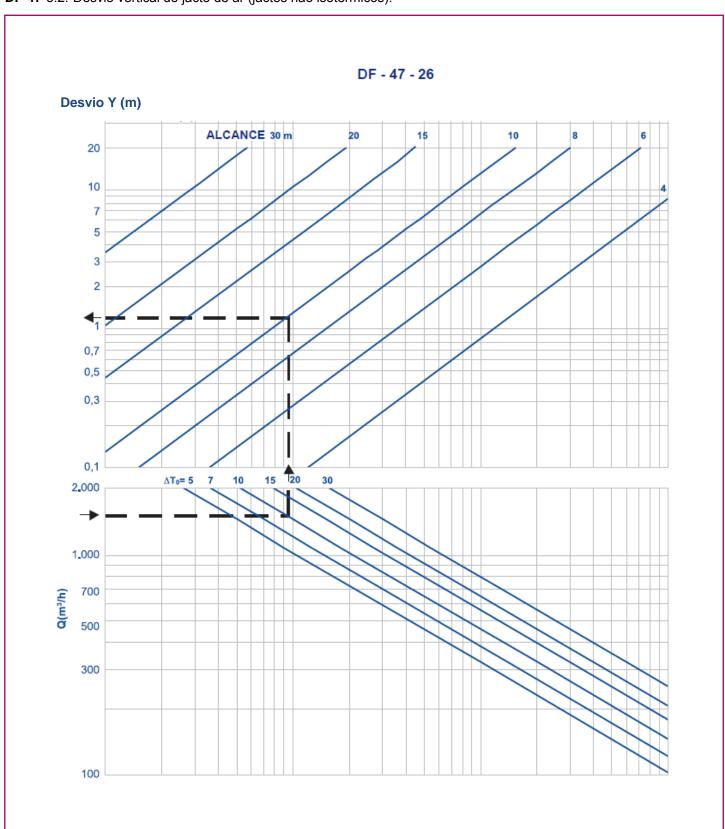
 $X_{0,3}$ - $X_{0,5}$ - $X_{1,0}$ = Alcance. Para velocidade terminal do ar de 0.3, 0.5 e 1.0 m/s, respectivamente.


Gráficos de selecção

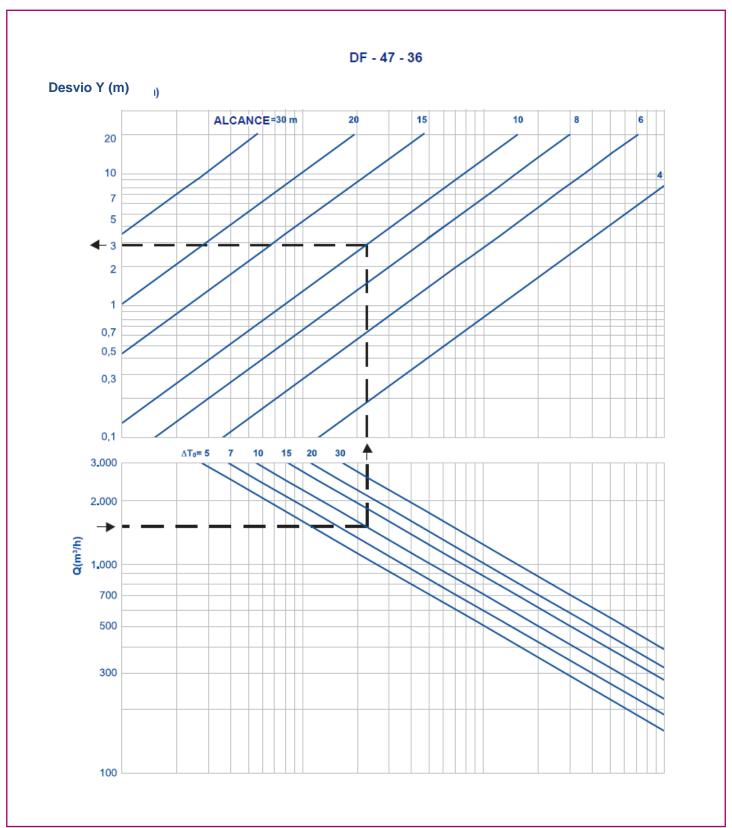
DF-47-1.-Máxima penetração vertical.



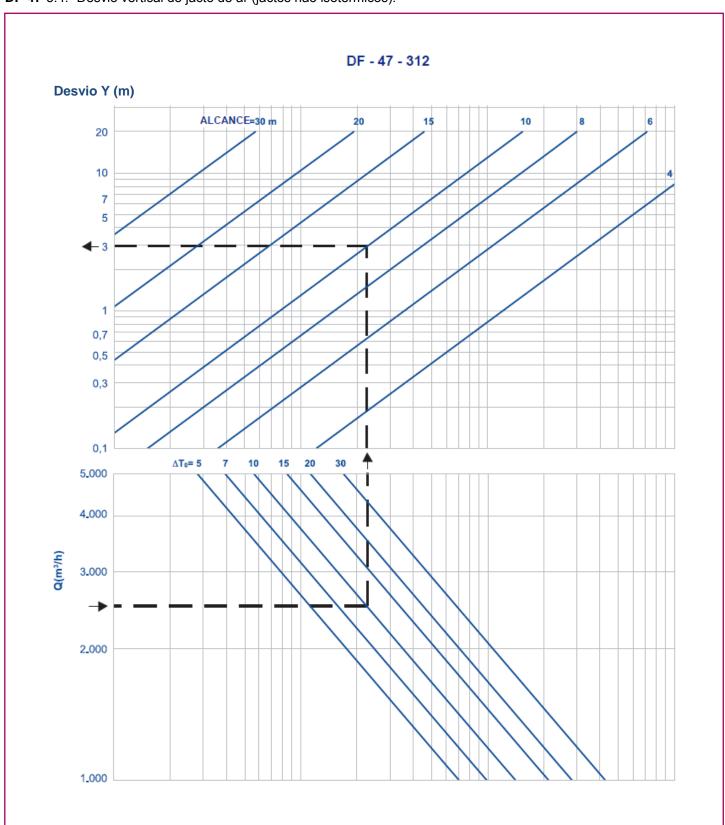
DF-47-2.- Velocidade do jacto de ar no alcance.



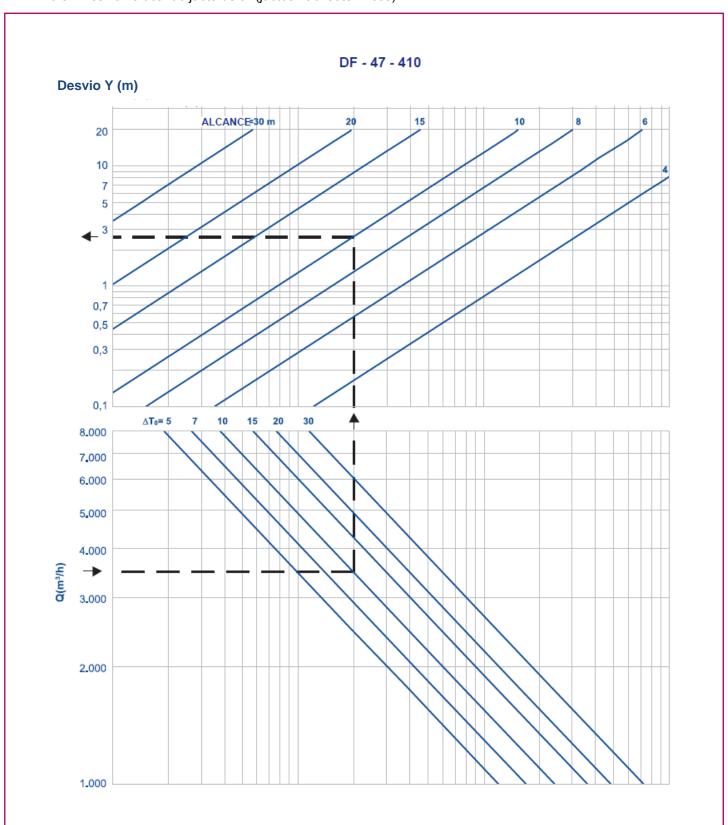
DF-47-3.1.- Desvio vertical do jacto de ar (jactos não isotérmicos).



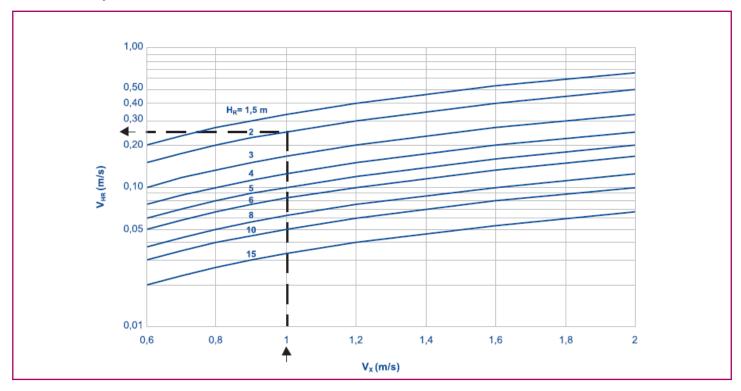
DF-47-3.2.-Desvio vertical do jacto de ar (jactos não isotérmicos).



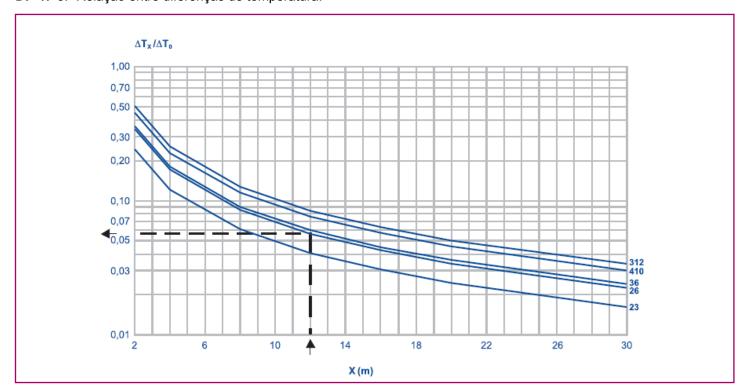
DF-47-3.3.- Desvio vertical do jacto de ar (jactos não isotérmicos).



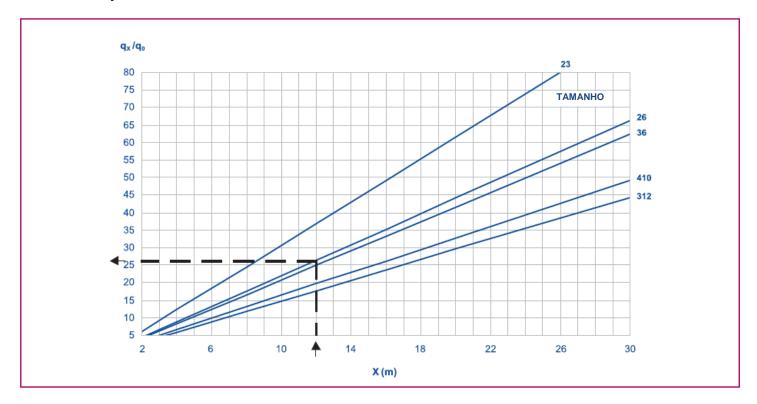
DF-47-3.4.- Desvio vertical do jacto de ar (jactos não isotérmicos).



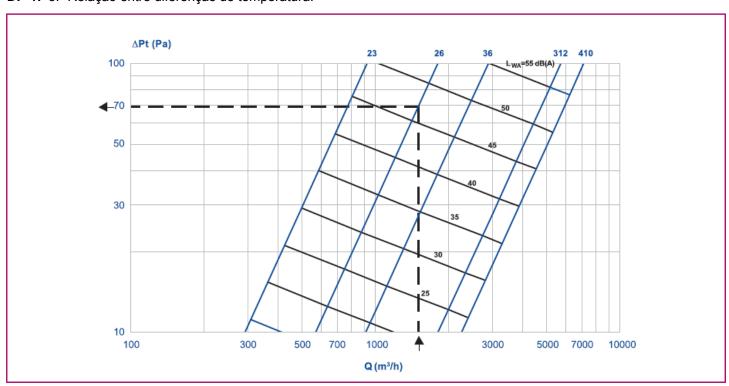
DF-47-3.5.- Desvio vertical do jacto de ar (jactos não isotérmicos).



DF-47-4.- Relação entre velocidades do fluxo de ar.



DF-47-5.- Relação entre diferenças de temperatura.



DF-47-4.- Relação entre velocidades do fluxo de ar.

DF-47-5.- Relação entre diferenças de temperatura.

Simbologia

Simbologia comum utilizada em todos os quadros e gráficos do catálogo.

Distância percorrida desde o equipamento até ao ponto de choque do jacto de ar (com outro jacto ou I(m):

parede) em condições isotérmicas.

Ángulo de impulsão. $\alpha_x(^\circ)$:

L(m): Distância horizontal desde o equipamento até ao ponto de choque do jacto de ar (com outro jacto ou

parede).

X(m): Alcance do jacto de ar.

Y(m): Desvio do jacto de ar motivado pela diferença de temperatura entre o ar insuflado e o ambiente.

Altura de localização dos equipamentos. H(m):

 $H_H(m)$: Altura da zona de habitabilidade

 $H_{C}(m)$: Altura desde o ponto de choque do jacto de ar (com outro jacto ou parede) em condições isotérmicas

ralativamente à localização dos equipamentos.

Altura desde o ponto de choque do jacto de ar (com outro jacto ou parede) em condições isotérmicas. $H_l(m)$: $H_R(m)$:

Altura desde o ponto de choque do jacto de ar (com outro jacto ou parede) relativamente ao ponto no

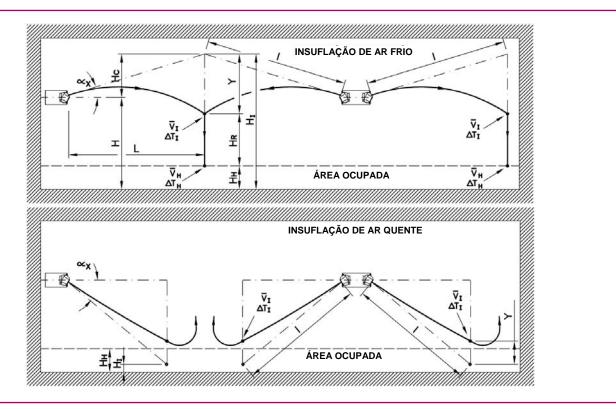
qual queremos conhecer a velocidade do ar e a temperatura (geralmente a zona de habitabilidade).

 $Q(m^3/h o l/s)$: Caudal de ar de insuflação: $A_K(m^2)$: Área efectiva de insuflação.

 $V_X(m/s)$: Velocidade do jacto de ar correspondente ao alcance X. $V_H(m/s)$: Velocidade do jacto de ar na zona de habitabilidade.

 $V_{\kappa}(m/s)$: Velocidade efectiva de insuflação.

 $V_{HR}(m/s)$: Velocidade do jacto de ar a uma distância HR abaixo do ponto de choque do jacto de ar (com outro jacto


ou parede).

 $\Delta T_{O}(^{\circ}C)$: Diferenca de temperaturas entre o jacto de ar em insuflação e o recinto a acondicionar. $\Delta T_X(^{\circ}C)$: Diferença de temperaturas entre o jacto de ar (para um alcance X) e o recinto a acondicionar. $\Delta T_h(^{\circ}C)$: Diferença de temperatura entre o jacto de ar (na zona de habitabilidade) e o recinto a acondicionar. Taxa de insuflação. Quociente entre o caudal do jacto de ar para um alcance X e o caudal de ar q_x/q_o :

impulsionado no recinto.

Alcance máximo em insuflação vertical com ar quente (V_x=0 m/s). $Y_{max}(m)$:

 $\Delta P_t(Pa)$: Perda de carga total. $L_{wA}[dB(A)]$: Nível de potência sonora.

ESTE CATÁLOGO É PROPRIEDADE INTELECTUAL.Fica proibida a reprodução parcial ou total do seu conteúdo sem autorização expressa e formal da KOOLAIR, S.L.

KOOLAIR, S.L.

Calle Urano, 26 Poligono industrial nº 2 – La Fuensanta 28936 Móstoles - Madrid - (España)

Tel: +34 91 645 00 33 Fax: +34 91 645 69 62 e-mail: info@koolair.com