DF-48

series

Long-throw spherical diffusers

www.koolair.com

CONTENTS

DF-48 spherical diffuser	2
Dimensions	3
DF-48 selection table	4
Selection and correction charts	5
Symbols	16

DF-48 spherical diffuser

Description

The DF-48 long-throw, spherical diffuser in its standard version is manufactured entirely of anodised aluminium with a natural finish. By special order, the diffuser can be painted in any RAL colour. The diffuser has a volume control damper at the outlet.

Application

The DF-48 diffusers allow long throws with an acceptable noise level. The diffuser releases an occasional air jet with a throw of over 30 metres. They

can be used for spot cooling and are especially appropriate for sport centres, industrial warehouses, clean rooms, recording studios, discotheques and large premises, as well as any area requiring precisely targeted air jets. The configuration allows the diffuser to be swiveled in any direction up to a maximum of $\pm 35^{\circ}$ in the horizontal or vertical direction.

0F-48	Spherical long-throw di
49.0	Sphorical long throw di

pherical long-throw diffuser, manual operation.

-C Spherical long-throw diffuser, manual operation with direct coupling collar to flexible duct.

3, 5, 8, 10, Seven sizes (see page 3) **12, 16 y 20**

Plenum or flan plate. Plenum box with connection to round duct. Integrated in plate to be adapted in round face duct. With "boot" to be installed in a round face duct.

Dimensions and mounting

The diffusers must attached by screws. The units can be supplied with plenum boxes or a plate fitted in an assembly of up to six units. See dimensions on page 3.

Identification

Seven sizes.

DF-48 dimensions

Dimensions DF-48 and DF-48-B

DF-48 accessories

Dimensions of plenum boxes for connection to round duct

Dimensions of plates with diffuser assemblies

DF-48 selection table

Q		Size	3		5			8			12			16			20			
(m³/h)	(l/s)	$A_k(m^2)$	0,0013		0,0033		0,0079		0,0214			0,0415			0,0707					
25	6,9	V _k (m/s)		5,3			2,1													
		$X_{0,3} X_{0,5} X_{1,0}$ (m)	3,3	2,0	1,0	2,1	1,3	0,6												
		ΔP_{t} (Pa)		17			3													
		L _{wA} - dB(A)		<15			<15													
50	13,9	V _k (m/s)		10,7			4,2													
		$X_{0,3} X_{0,5} X_{1,0}$ (m)	6,7	4,0	2,0	4,2	2,5	1,3												
		$\Delta P_{t} (Pa)$		68			11													
		L _{wA} - dB(A)		25			<15													
100	27,8	V _k (m/s)		21,4			8,4			3,5										
		$X_{0,3} X_{0,5} X_{1,0}$ (m)	13,4	8,0	4,0	8,4	5,0	2,5	5,4	3,3	1,6									
		$\Delta P_{t}(Pa)$		274			43			7										
		L _{wA} - dB(A)		46			22			<15										
250	69,4	V _k (m/s)					21,0			8,8			3,2							
		$X_{0,3} X_{0,5} X_{1,0}$ (m)				21,0	12,6	6,3	13,5	8,1	4,1	8,2	4,9	2,5						
		ΔP_{t} (Pa)					266			46			6							
		L _{wA} - dB(A)					50			27			<15							
500	138,9	V _k (m/s)								17,6			6,5			3,3				
		$X_{0,3} X_{0,5} X_{1,0}$ (m)							27,1	16,3	8,1	16,5	9,9	4,9	11,8	7,1	3,5			
		ΔP_t (Pa)								185			25			7				
		L _{wA} - dB(A)								48			22			<15				
750	208,3	V _k (m/s)											9,7			5,0			2,9	
		$X_{0,3} X_{0,5} X_{1,0}$ (m)										24,7	14,8	7,4	17,7	10,6	5,3	13,6	8,1	4,1
		∆P _t (Pa)											57			15			5	
		L _{wA} - dB(A)											34			17			<15	
1250	347,2	V _k (m/s)											16,2			8,4			4,9	
		$X_{0,3} X_{0,5} X_{1,0}$ (m)										>30	24,7	12,3	29,5	17,7	8,9	22,6	13,6	6,8
		∆P _t (Pa)											158			42			14	
		L _{wA} - dB(A)											50			33			19	
2000	555,6	V _k (m/s)														13,4			7,9	
		$X_{0,3} X_{0,5} X_{1,0}$ (m)													>30	28,4	14,2	>30	21,7	10,9
		∆P _t (Pa)														108			37	
		L _{wA} - dB(A)														47			33	
2750	763,9	V _k (m/s)																	10,8	
		$X_{0,3} X_{0,5} X_{1,0}$ (m)																>30	29,9	14,9
		$\Delta P_t (Pa)$																	70	
	070.0	$L_{wA} - dB(A)$																	43	
3500	972,2	V _k (m/s)																	13,8	10.0
		$X_{0,3} X_{0,5} X_{1,0}$ (m)																>30	>30	19,0
		$\Delta P_{t}(Pa)$																	113	
		L _{wA} - dB(A)																	50	

Notes

- This selection table is based on laboratory tests as per ISO 5219 (UNE 100.710) and ISO 5135 and 3741 standards.

- Δt is equal to 0°C (isothermal air).

- The behaviour of the air jet with different Δt is shown in the following charts.

Symbols

Q = Air flow

 V_{K} = Effective velocity

 A_{K} = Effective area ΔP_t = Total pressure drop

 L_{wA} = Sound power

 $X_{0,3} - X_{0,5} - X_{1,0}$ = Throw for a terminal air velocity of 0.3, 0.5 and 1.0 m/s, respectively.

Selection charts

DF-48-2.- Velocity of the air jet for the throw.

6

DF-48-3.1.- Vertical deviation of the air jet (non-isothermal jets).

DF-48-3.2.- Vertical deviation of the air jet (non-isothermal jets).

DF-48-3.3.- Vertical deviation of the air jet (non-isothermal jets).

DF-48-3.4.- Vertical deviation of the air jet (non-isothermal jets).

DF-48-3.4.- Vertical deviation of the air jet (non-isothermal jets).

DF-48-3.6.- Vertical deviation of the air jet (non-isothermal jets).

I{{•]•]**|**|R

DF-48 model

DF-48-4.- Ratio between air flow velocities.

DF-48-5.- Ratio between temperature differences.

I(eIe]**I**AR

DF-48 model

DF-48-6.- Induction rate.

DF-48-7.- Pressure drop and sound power level.

Symbols

Common symbols used in all tables and charts in the catalogue.

l(m):	Distance between the equipment to the impact point of the jets (with another jet or wall) under isothermal conditions.
$\alpha_{x}(^{\circ})$:	Supply angle.
L(m):	Horizontal distance from the equipment to the impact point of the jets (with another jet or wall).
X(m):	Throw of the air jet.
Y(m):	Deviation of the air jet caused by a temperature difference between the supply and ambient air.
H(m):	Installation height of the equipment.
Н _н (m):	Height of occupied area.
H _C (m):	Height from the impact point of the jets (with another jet or wall) under isothermal conditions with respect to the equipment location.
H _l (m):	Height from the impact point of the jets (with another jet or wall) under isothermal conditions.
H _R (m):	Height from impact point of the jets (with another jet or wall) with respect to the point where the air velocity and temperature are to be determined (generally the occupied area).
$Q(m^3/h \circ l/s)$:	Supply air flow.
$A_{\kappa}(m^2)$:	Effective area.
V _x (m/s):	Velocity of the jets at throw X.
V _H (m/s):	Velocity of the jets in the occupied area.
V _K (m/s):	Effective supply velocity.
V _{HR} (m/s):	Velocity of the jets at a distance, HR, below the impact point of the jets (with another jet or wall).
ΔT _O (°C):	Temperature difference between the supply jets and room air.
ΔT _X (°C):	Temperature difference between the jets (for throw X) and room air.
ΔT _h (°C):	Temperature difference between the jets (in occupied area) and room air.
q _x /q _o :	Induction rate. Quotient between the air flow for a throw X and the air flow supplied in the zone.
Y _{max} (m):	Maximum throw with vertical supply of hot air (Vx=0 m/s).
ΔP _t (Pa):	Total pressure drop.
L _{wA} [dB(A)]:	Sound power level.

KOOLAIR, S.L.

Calle Urano, 26 Poligono industrial nº 2 – La Fuensanta 28936 Móstoles - Madrid - (España) Tel: +34 91 645 00 33 Fax: +34 91 645 69 62 e-mail: info@koolair.com

www.koolair.com