E

series

Long-throw nozzles

CONTENTS

DF-89 jet nozzle 2
Dimensions 3
DF-89 selection table 4
Selection and correction charts 5
Selection example 14
Symbols 16

Long-throw jet nozzle DF-89

Identification

Five sizes with manual swiveling. The motor drive swivels the nozzle in the vertical direction (up and down) at an angle of approximately $\pm 30^{\circ}$. For motor-driven operation one motor is required per nozzle, even in assemblies containing several units.

Description

The DF-89 long-throw jet nozzle and its flange are made of aluminium painted white RAL 9010 as standard finish. The connection part is manufactured of galvanised steel sheet. The DF89 nozzle has an extraordinarily good aesthetic design and can be painted by special order to fit any decorative need

Application

The DF-89 nozzles provide long throws with a low noise level, releasing a long air jet with exceptional precision to a length of over 30 metres. They can be used for spot cooling and are especially appropriate for large rooms requiring a decorative look, for instance, large vestibules, nightclubs or entertainment areas, department stores, hotels, etc. The configuration allows the nozzle to swivel in all directions up to a maximum of $\pm 30^{\circ}$ in the horizontal or vertical direction.

DF-89 Long-throw nozzles, manual operation.
A or C Connection system.
5, 8, 10, Five sizes (see page 3).
12, 16, 20

INJ
Plenum or flan plate.
Plenum box with connection to round duct.
Integrated in plate to be adapted in round face duct. With "boot" to be installed in a round face duct.

Long-throw jet nozzle DF-89

Dimensions

Version A of the DF-89 jet nozzles can be mounted directly to the duct, plenum box or surface.
Version B allows a flexible duct of standard dimensions to be coupled directly to each nozzle.
In both cases, the nozzles are fixed by screws.
In terms of the motor drive system, the motor may be placed inside or outside the unit, depending on the connection system and motor type (each case should be analysed separately). Please contact us for more information.

DF-89 selection table

Q		Size	5	8	10	12	16	20
($\mathrm{m}^{3} / \mathrm{h}$)	(1/s)	$\mathrm{A}_{\mathrm{k}}\left(\mathrm{m}^{2}\right)$	0,0025	0,0060	0,01262	0,0184	0,0390	0,0724
75	20,8	$\begin{gathered} \mathrm{V}_{\mathrm{k}}(\mathrm{~m} / \mathrm{s}) \\ \mathrm{X}_{0,3} \mathrm{X}_{0,5} \mathrm{X}_{1,0}(\mathrm{~m}) \\ \Delta \mathrm{P}_{\mathrm{t}}(\mathrm{~Pa}) \\ \mathrm{L}_{\mathrm{wA}}-\mathrm{dB}(\mathrm{~A}) \end{gathered}$	$\begin{array}{\|rcc\|} \hline & 8,3 & \\ 11,4 & 6,9 & 3,4 \\ & 37 & \\ & <15 & \\ \hline \end{array}$	$\begin{array}{ccc} \hline & 3,5 & \\ 6,9 & 4,1 & 2,1 \\ & 6 & \\ & <15 & \end{array}$				
150	41,7	$\begin{gathered} \mathrm{V}_{\mathrm{k}}(\mathrm{~m} / \mathrm{s}) \\ \mathrm{X}_{0,3} \mathrm{X}_{0,5} \mathrm{X}_{1,0}(\mathrm{~m}) \\ \Delta \mathrm{P}_{\mathrm{t}}(\mathrm{~Pa}) \\ \mathrm{L}_{\mathrm{wA}}-\mathrm{dB}(\mathrm{~A}) \\ \hline \end{gathered}$	$\begin{array}{\|ccc\|} \hline 16,6 & \\ 22,9 & 13,7 & 6,9 \\ 148 & \\ 34 & \\ \hline \end{array}$	$\begin{array}{\|ccc\|} \hline & 6,9 & \\ 13,8 & 8,3 & 4,1 \\ & 25 & \\ & <15 & \end{array}$	$\begin{array}{ccc} \hline & 3,3 & \\ 9,4 & 5,7 & 2,8 \\ & 7 & \\ & <15 & \end{array}$			
250	69,4	$\begin{gathered} \mathrm{V}_{\mathrm{k}}(\mathrm{~m} / \mathrm{s}) \\ \mathrm{X}_{0,3} \mathrm{X}_{0,5} \mathrm{X}_{1,0}(\mathrm{~m}) \\ \Delta \mathrm{P}_{\mathrm{t}}(\mathrm{~Pa}) \\ \mathrm{L}_{\mathrm{wA}}-\mathrm{dB}(\mathrm{~A}) \\ \hline \end{gathered}$	$\begin{array}{\|cc\|} \hline 27,7 \\ >30 & 22,9 \quad 11,4 \\ 411 \\ 49 \end{array}$	11,5 22,9 13,8 6,9 69 26	5,5 15,7 9,4 4,7 19 <15	3,8 12,9 7,8 3,9 7 <15		
500	138,9	$\begin{gathered} \mathrm{V}_{\mathrm{k}}(\mathrm{~m} / \mathrm{s}) \\ \mathrm{X}_{0,3} \mathrm{X}_{0,5} \mathrm{X}_{1,0}(\mathrm{~m}) \\ \Delta \mathrm{P}_{\mathrm{t}}(\mathrm{~Pa}) \\ \mathrm{L}_{\mathrm{wA}}-\mathrm{dB}(\mathrm{~A}) \\ \hline \end{gathered}$		$\begin{array}{\|ccc\|} \hline>30 & 23,0 & \\ & 27,5 & 13,8 \\ 274 & \\ 47 & \\ \hline \end{array}$	$\begin{array}{\|ccc\|} \hline & 11,0 & \\ >30 & 18,9 & 9,4 \\ & 75 & \\ & 33 & \\ \hline \end{array}$	$\begin{array}{\|ccc\|} \hline & 7,5 & \\ 25,9 & 15,5 & 7,8 \\ & 28 & \\ & 17 & \\ \hline \end{array}$	 17,6 10,4 5,2 6 <15	
750	208,3	$\begin{gathered} \hline \mathrm{V}_{\mathrm{k}}(\mathrm{~m} / \mathrm{s}) \\ \mathrm{X}_{0,3} \mathrm{X}_{0,5} \mathrm{X}_{1,0}(\mathrm{~m}) \\ \Delta \mathrm{P}_{\mathrm{t}}(\mathrm{~Pa}) \\ \mathrm{L}_{\mathrm{wA}}-\mathrm{dB}(\mathrm{~A}) \\ \hline \end{gathered}$			$\begin{array}{\|ccc\|} \hline>30 & 16,5 \\ 28,3 & 14,1 \\ 169 \\ 47 \end{array}$	$$	$\begin{array}{\|ccc\|} \hline & 5,3 & \\ 26,0 & 15,6 & 7,8 \\ & 15 & \\ & <15 & \\ \hline \end{array}$	
1000	277,8	$\begin{gathered} \mathrm{V}_{\mathrm{k}}(\mathrm{~m} / \mathrm{s}) \\ \mathrm{X}_{0,3} \mathrm{X}_{0,5} \mathrm{X}_{1,0}(\mathrm{~m}) \\ \Delta \mathrm{P}_{\mathrm{t}}(\mathrm{~Pa}) \\ \mathrm{L}_{\mathrm{wA}}-\mathrm{dB}(\mathrm{~A}) \\ \hline \end{gathered}$				$$	 7,1 $20,8 \quad 10,4$ 26 23	3,8 25,5 15,3 7,6 6 <15
1500	416,7	$\begin{gathered} \mathrm{V}_{\mathrm{k}}(\mathrm{~m} / \mathrm{s}) \\ \mathrm{X}_{0,3} \mathrm{X}_{0,5} \mathrm{X}_{1,0}(\mathrm{~m}) \\ \Delta \mathrm{P}_{\mathrm{t}}(\mathrm{~Pa}) \\ \mathrm{L}_{\mathrm{wA}}-\mathrm{dB}(\mathrm{~A}) \\ \hline \end{gathered}$				22,6 $>30 \quad>30 \quad 23,3$ 255 50	$\begin{array}{ccc} & 10,7 \\ >30 & >30 & 15,6 \\ 58 & \\ 35 \end{array}$	5,8 >30 22,9 11,5 13 17
2000	555,6	$\begin{gathered} \mathrm{V}_{\mathrm{k}}(\mathrm{~m} / \mathrm{s}) \\ \mathrm{X}_{0,3} \mathrm{X}_{0,5} \mathrm{X}_{1,0}(\mathrm{~m}) \\ \Delta \mathrm{P}_{\mathrm{t}}(\mathrm{~Pa}) \\ \mathrm{L}_{\mathrm{wA}}-\mathrm{dB}(\mathrm{~A}) \\ \hline \end{gathered}$					$\begin{array}{ccc} & 14,2 & \\ >30 & >30 & 20,8 \\ 103 & \\ 44 \end{array}$	$\begin{array}{ccc} \hline & 7,7 & \\ >30 & >30 & 15,3 \\ 23 & \\ 25 & \end{array}$
2500	694,4	$\begin{gathered} \mathrm{V}_{\mathrm{k}}(\mathrm{~m} / \mathrm{s}) \\ \mathrm{X}_{0,3} \mathrm{X}_{0,5} \mathrm{X}_{1,0}(\mathrm{~m}) \\ \Delta \mathrm{P}_{\mathrm{t}}(\mathrm{~Pa}) \\ \mathrm{L}_{\mathrm{wA}}-\mathrm{dB}(\mathrm{~A}) \\ \hline \end{gathered}$					$\begin{array}{ccc} \hline & 17,8 \\ >30 & >30 \quad 26,0 \\ & 161 \\ & 50 \\ \hline \end{array}$	$\begin{array}{rcc\|} \hline & 9,6 & \\ >30 & >30 & 19,1 \\ & 35 & \\ & 32 & \end{array}$
3000	833,3	$\begin{gathered} \mathrm{V}_{\mathrm{k}}(\mathrm{~m} / \mathrm{s}) \\ \mathrm{X}_{0,3} \mathrm{X}_{0,5} \mathrm{X}_{1,0}(\mathrm{~m}) \\ \Delta \mathrm{P}_{\mathrm{t}}(\mathrm{~Pa}) \\ \mathrm{L}_{\mathrm{wA}}-\mathrm{dB}(\mathrm{~A}) \\ \hline \end{gathered}$						$\begin{array}{ccc} \hline & 11,5 \\ >30 & >30 \quad 22,9 \\ & 51 & \\ & 37 \end{array}$
3500	972,2	$\begin{gathered} \mathrm{V}_{\mathrm{k}}(\mathrm{~m} / \mathrm{s}) \\ \mathrm{X}_{0,3} \mathrm{X}_{0,5} \mathrm{X}_{1,0}(\mathrm{~m}) \\ \Delta \mathrm{P}_{\mathrm{t}}(\mathrm{~Pa}) \\ \mathrm{L}_{\mathrm{wA}}-\mathrm{dB}(\mathrm{~A}) \\ \hline \end{gathered}$						$\begin{array}{ccc} \hline & 13,4 \\ >30 & >30 \quad 26,7 \\ 69 \\ & \\ 42 \end{array}$
4000	1111,1	$\begin{gathered} \mathrm{V}_{\mathrm{k}}(\mathrm{~m} / \mathrm{s}) \\ \mathrm{X}_{0,3} \mathrm{X}_{0,5} \mathrm{X}_{1,0}(\mathrm{~m}) \\ \Delta \mathrm{P}_{\mathrm{t}}(\mathrm{~Pa}) \\ \mathrm{L}_{\mathrm{wA}}-\mathrm{dB}(\mathrm{~A}) \\ \hline \end{gathered}$						$\begin{array}{cc} & \begin{array}{c} 15,3 \\ >30 \\ >30 \\ 90 \\ \\ 46 \end{array} \end{array}$

Notes

- This selection table is based on laboratory tests as per ISO 5219 (UNE 100.710) and ISO 5135 and 3741.
$-\Delta \mathrm{T}$ is equal to $0^{\circ} \mathrm{C}$ (isothermal air).
- The behaviour of the air jet with different Δt is shown in the following charts.

Symbols

Q = Air flow
$V_{K}=$ Effective velocity
$A_{K}=$ Effective area
$\Delta P_{t}=$ Total pressure drop
$\mathrm{L}_{\text {wA }}=$ Sound power
$\mathrm{X}_{0,3}-\mathrm{X}_{0,5}-\mathrm{X}_{1,0}=$ Throw for a terminal air velocity of 0.3 ,
0.5 and $1.0 \mathrm{~m} / \mathrm{s}$, respectively.

DF-89 model

Selection charts

DF-89-1.- Maximum vertical penetration.

DF-89 model

DF-89-2.- Velocity of the air jet for the throw.

DF-89 model

DF-89-3.1.- Vertical deviation of the air jet (non-isothermal jets).

SIZE 5

DF-89 model

DF-89-3. 2.- Vertical deviation of the air jet (non-isothermal jets).

SIZE 8

DF-89 model

DF-89-3. 3.- Vertical deviation of the air jet (non-isothermal jets).

SIZE 10

DF-89 model

DF-89-3. 3.- Vertical deviation of the air jet (non-isothermal jets).

SIZE 12

DF-89 model

DF-89-3. 4.- Vertical deviation of the air jet (non-isothermal jets).

SIZE 16

DF-89 model

DF-89-4.- Ratio between air flow velocities.

DF-89-5.- Ratio between temperature differences.

DF-89 model

DF-89-6.- Induction rate.

DF-89-7.- Pressure drop and sound power level.

Selection in a sample project

Initial data

Two DF-89 nozzles are located, one in front of the other at a distance of 24 m , with the following starting data based on the sketch attached in the Symbols section on page 16.
$-L=12 m$

- $\mathrm{H}=4 \mathrm{~m}$ (height from floor)
$-Q_{\text {nozzle }}=400 \mathrm{I} / \mathrm{s}$
- Supply temperature $=15^{\circ} \mathrm{C}$
- Room temperature $=25^{\circ} \mathrm{C}$
$-\Delta T_{0}=-10^{\circ} \mathrm{C}$
- $\mathrm{H}_{\mathrm{H}}=2 \mathrm{~m}$ (height of occupied area)

The diffuser should be selected to obtain the following:

- Maximum velocity in the occupied area: $0,2 \mathrm{~m} / \mathrm{s}$.
- The vertical temperature gradient must not exceed $3^{\circ} \mathrm{C}$.
- The sound power level of the selected equipment must not exceed $40 \mathrm{~dB}(\mathrm{~A})$.

Selection

- DF-89 quick selection table (page 4)

Based on the sound power limit, size 16 is preselected.

- DF-89-7 chart (page 13)

Using size 16 for $400 \mathrm{l} / \mathrm{s}$, the following values are obtained:

$$
\begin{aligned}
& -\Delta P_{t}=54 \mathrm{~Pa}(\text { pressure drop) } \\
& -\mathrm{L}_{\mathrm{wA}}=34 \mathrm{~dB}(\mathrm{~A}) \text { (sound power level) }
\end{aligned}
$$

- DF-89-2 chart (page 6)

For a supply angle of $\alpha_{x}=+15^{\circ} \mathrm{C}$,
The throw will be $\mathrm{I}=\mathrm{L} / \cos 15^{\circ}=12 / 0,966=12,42 \mathrm{~m}$
According to the chart, the velocity for this throw is $\mathbf{V}_{\mathbf{x}}=\mathbf{1 , 2} \mathbf{~ m} / \mathrm{s}$

- DF-89-3.4 chart (page 11)

The impact point under isothermal conditions would be $\mathrm{H}+\mathrm{H}_{\mathrm{C}}=\mathrm{H}+\left(\mathrm{L} x \tan 15^{\circ}\right)=4+(12 \times 0,268)=7,2 \mathrm{~m}$ The chart indicates that for $\Delta T_{0}=-10^{\circ} \mathrm{C}$, throw: $12,42 \mathrm{~m}$ and $\mathrm{Q}: 400 \mathrm{I} / \mathrm{s}$ the vertical deviation is $\mathrm{Y}=\mathbf{1 , 6} \mathbf{~ m}$, as the air jet is non-isothermal.
Therefore, the air jets have an impact point situation at a height from the floor of: 7,2-1,6=5,6 m.

- DF-89-4 chart (page 12)

For a height $H_{R}=5,6-2=3,6 m$, entering with $\mathrm{V}_{\mathrm{X}}=1,2 \mathrm{~m} / \mathrm{s}$ gives a velocity of $\mathrm{V}_{\mathrm{HR}}=\mathrm{V}_{\mathrm{H}}=\mathbf{0 , 1 7} \mathbf{m} / \mathbf{s}$ in the occupied area.

- DF-89-6 chart (page 13)

For a throw of $\mathrm{I}+\mathrm{H}_{\mathrm{R}}=12,42+3,6=16,02$ we have $\mathbf{q}_{\mathrm{x}} / \mathbf{q}_{0}=\mathbf{2 1 , 9}$.

- DF-89-5 chart (page 12)

For a throw of $\mathrm{I}+\mathrm{HR}=12,42+3,6=16,02$ we have $\Delta \mathrm{TX} / \Delta \mathrm{T} 0=0,07$.
Therefore, the temperature of the air jet at its inlet in the occupied zone will be:

$$
\Delta T_{x}=T_{x}-T_{\text {Temperature }} \quad T_{x}=T_{\text {Temperature }}+\Delta T_{x}=25+[0,07 x(-10)] \quad T_{x}=24,3^{\circ} \mathrm{C}
$$

Symbols

Common symbols used in all tables and charts in the catalogue.

$\mathrm{I}(\mathrm{m})$: Distance between the equipment to the impact point of the jets (with another jet or wall) under isothermal conditions.
$\alpha_{x}\left({ }^{\circ}\right):$ Supply angle.
L(m): Horizontal distance from the equipment to the impact point of the jets (with another jet or wall).
$X(m)$:
$Y(m)$: Throw of the air jet.
$\mathrm{H}(\mathrm{m})$:
Deviation of the air jet caused by a temperature difference between the supply and ambient air.
$\mathrm{H}_{\mathrm{H}}(\mathrm{m})$: Installation height of the equipment.
$\mathrm{H}_{\mathrm{C}}(\mathrm{m})$:
Height of occupied area.
Height from the impact point of the jets (with another jet or wall) under isothermal conditions with respect to the equipment location.
$H_{l}(m): \quad$ Height from the impact point of the jets (with another jet or wall) under isothermal conditions.
$H_{R}(m): \quad$ Height from impact point of the jets (with another jet or wall) with respect to the point where the air velocity and temperature are to be determined (generally the occupied area).
$Q\left(\mathrm{~m}^{3} / \mathrm{h}\right.$ ól/s): Supply air flow.
$\mathrm{A}_{\mathrm{k}}\left(\mathrm{m}^{2}\right)$: Effective area.
$V_{X}(\mathrm{~m} / \mathrm{s})$: \quad Velocity of the jets at throw X.
$V_{H}(\mathrm{~m} / \mathrm{s}): \quad$ Velocity of the jets in the occupied area.
$V_{K}(\mathrm{~m} / \mathrm{s})$: \quad Effective supply velocity.
$V_{H R}(\mathrm{~m} / \mathrm{s})$: \quad Velocity of the jets at a distance, HR, below the impact point of the jets (with another jet or wall).
$\Delta \mathrm{T}_{\mathrm{O}}\left({ }^{\circ} \mathrm{C}\right)$: \quad Temperature difference between the supply jets and room air.
$\Delta T_{x}\left({ }^{\circ} \mathrm{C}\right): \quad$ Temperature difference between the jets (for throw X) and room air.
$\Delta T_{h}\left({ }^{\circ} \mathrm{C}\right)$: Temperature difference between the jets (in occupied area) and room air.
$\mathrm{q}_{\mathrm{x}} / \mathrm{q}_{0}$:
$Y_{\max }(\mathrm{m})$: \quad Maximum throw with vertical supply of hot air ($\mathrm{Vx}=0 \mathrm{~m} / \mathrm{s}$).
$\Delta \mathrm{P}_{\mathrm{t}}(\mathrm{Pa})$: \quad Total pressure drop.
$\mathrm{L}_{\mathrm{wA}}[\mathrm{dB}(\mathrm{A})]$: \quad Sound power level.

KOOLAIR, S.L.
Calle Urano, 26
Poligono industrial $n^{\circ} 2$ - La Fuensanta 28936 Móstoles - Madrid - (España)
Tel: +34 916450033
Fax: +34 916456962
e-mail: info@koolair.com

