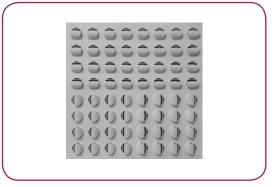


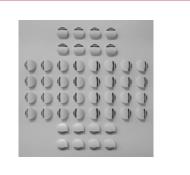
# serie

# DTP-GT

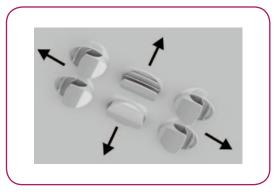
Difusores de microtoberas







## ÍNDICE

| Introducción          | 2  |
|-----------------------|----|
| Modelos y dimensiones | 3  |
| Tablas de selección   | 7  |
| Codificación          | 11 |




#### Difusor de microtoberas DTP-GT









#### Descripción

El DTP-GT, difusor de microtoberas de mayor caudal, está diseñado para resolver cualquier problema de difusión tanto convencional como específico, adaptándose a las múltiples y diferenciadas situaciones que plantean una correcta difusión. Nos encontramos ante un producto versátil, con una estética diferente que permite cubrir las necesidades del diseño de interiores, con un bajo nivel sonoro y excelente comportamiento.

Constituidos por pequeñas toberas orientables individualmente en todas la direcciones. Al ser orientables permiten ajustarlas en la puesta en marcha, resolviendo aquellos pequeños problemas que aparecen en ocasiones, en los que el exceso o falta de aire en determinadas zonas pueden generar inconvenientes en la difusión.

Cumplen los siguientes requisitos:

- Alto grado de difusión de aire en cualquier dirección.
- Aplicable en instalaciones de caudal constante y variable.
- Utilizable tanto en impulsión de aire frío como caliente (flujo horizontal o vertical).
- · Bajo nivel sonoro.
- Flexibilidad en la integración a cualquier tipo de decoración o diseño interior.
- Posibilidad de modificar en obra y ajustar múltiples orientaciones de la vena de aire, radial, lineal, rotacional, vertical.

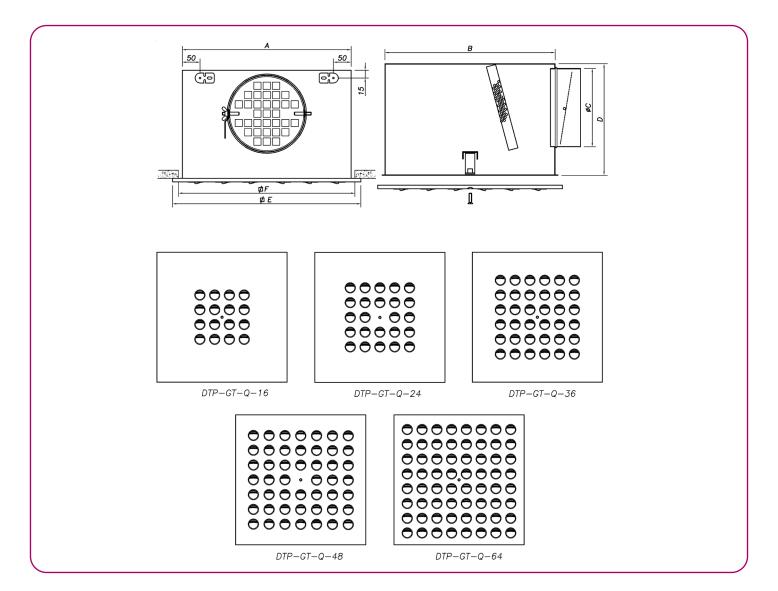
Modelo DTP-GT-Combi con posibilidad de impusión/retorno.

#### Utilización

Su integración en falso techo lo hace especialmente indicado para edificios de oficinas, hoteles, restaurantes, salas de exposiciones, bancos, bibliotecas, etc. También puede colocarse en conducto, en plenums decorativos, en pared, en suelo o en antepecho de ventanales.

El comportamiento es similar a un difusor lineal con flujo horizontal, produciéndose el "efecto coanda" manteniendo una circulación uniforme y una alta inducción. Para obtener el flujo de aire vertical basta enfrentas dos o más toberas.

#### **Acabados**

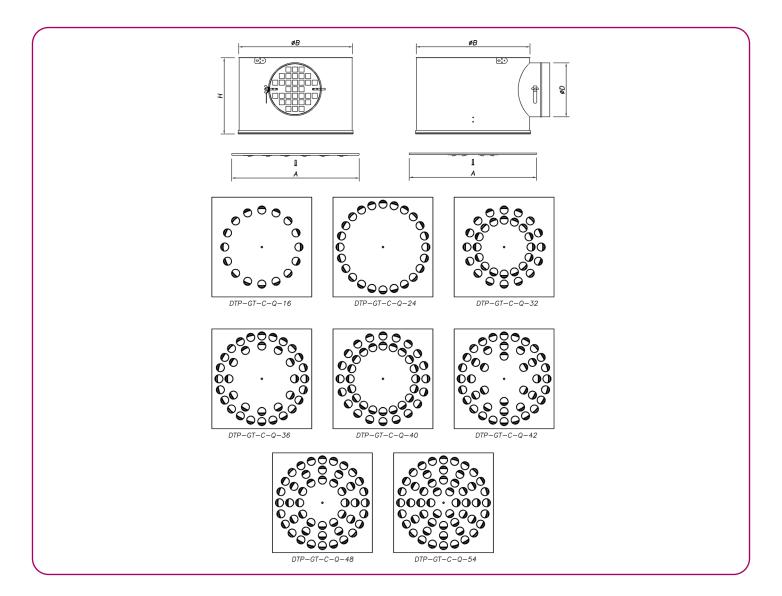

Microtoberas fabricadas en material plástico ABS-VO en color blanco y placa en chapa de acero. Acabado estándar en RAL 9010 brillo.

Plenum de conexión en chapa de acero galvanizado con chapa ecualizadora interior para garantizar una correcta distribución del aire y boca de entrada, de diámetro normalizado según ISO, con compuerta de regulación manual.

Existe asimismo la posibilidad de incorporar un servomotor eléctrico para aplicaciones en sistemas VAV. Otros acabados especiales pueden ser suministrados bajo demanda y previa consulta a nuestro departamento comercial.



## **Modelos y dimensiones: DTP-GT-Q / DTP-GT**

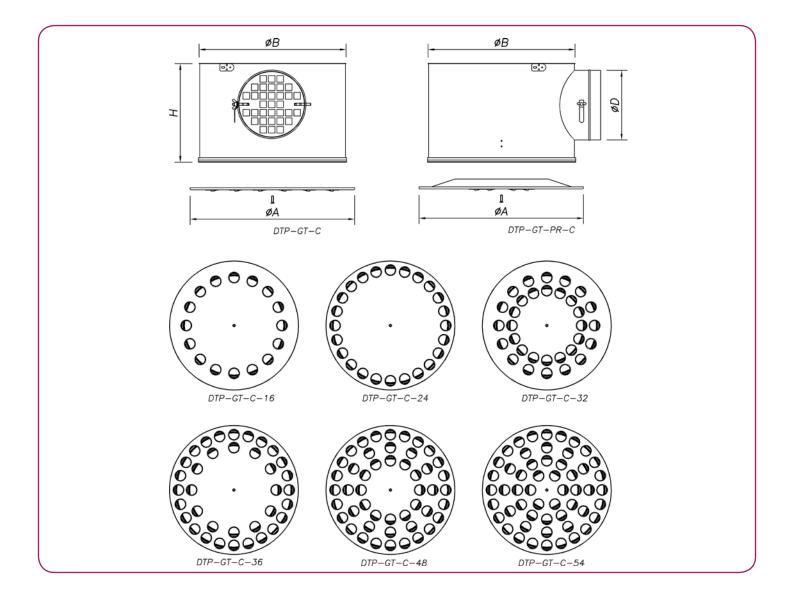



| MODELO      | Α   | В   | С   | D   | E   | F   |
|-------------|-----|-----|-----|-----|-----|-----|
| DTP-GT-Q-16 | 288 | 270 | 125 | 225 | 594 | 570 |
| DTP-GT-Q-24 | 368 | 350 | 125 | 225 | 594 | 570 |
| DTP-GT-Q-36 | 428 | 410 | 160 | 250 | 594 | 570 |
| DTP-GT-Q-48 | 506 | 488 | 200 | 300 | 594 | 570 |
| DTP-GT-Q-64 | 568 | 550 | 200 | 300 | 594 | 570 |
| DTP-GT-16   | 288 | 270 | 125 | 225 | 294 | 290 |
| DTP-GT-24   | 368 | 350 | 125 | 225 | 444 | 370 |
| DTP-GT-36   | 428 | 410 | 160 | 250 | 494 | 430 |
| DTP-GT-48   | 506 | 488 | 200 | 300 | 554 | 508 |
| DTP-GT-64   | 568 | 550 | 200 | 300 | 594 | 570 |

La fijación del difusor frontal al plenum se realiza mediante flejes, en el caso de plenum desmontable (dimensiones indicadas).



## Modelos y dimensiones: DTP-GT-C-Q

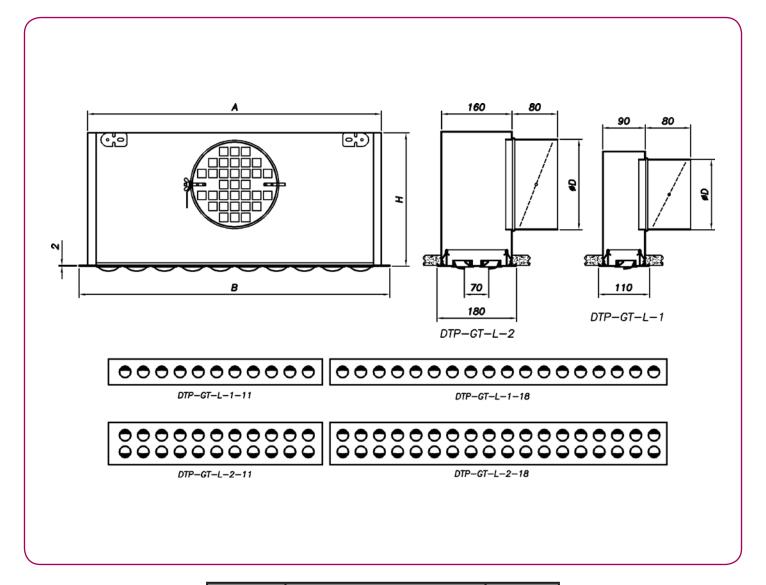



| MODELO        | Α   | В   | D   | Н   |
|---------------|-----|-----|-----|-----|
| DTP-GT-C-Q-16 | 594 | 580 | 125 | 200 |
| DTP-GT-C-Q-24 | 594 | 580 | 125 | 200 |
| DTP-GT-C-Q-32 | 594 | 580 | 160 | 235 |
| DTP-GT-C-Q-36 | 594 | 580 | 160 | 235 |
| DTP-GT-C-Q-40 | 594 | 580 | 200 | 275 |
| DTP-GT-C-Q-42 | 594 | 580 | 200 | 275 |
| DTP-GT-C-Q-48 | 594 | 580 | 200 | 275 |
| DTP-GT-C-Q-54 | 594 | 580 | 200 | 275 |

La fijación del difusor frontal al plenum se realiza mediante un único tornillo central, en el caso de plenum desmontable (dimensiones indicadas).



## **Modelos y dimensiones: DTP-GT-C**

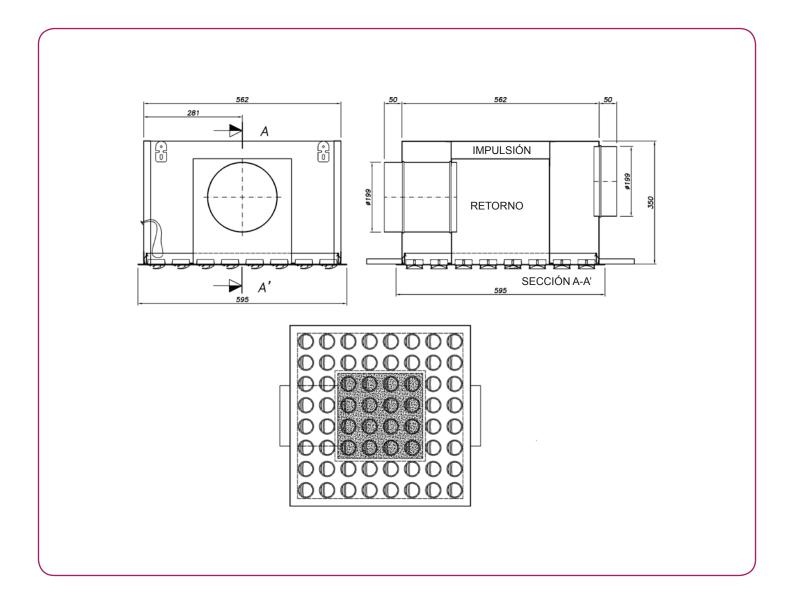



| MODELO      | ØΑ  | ØВ  | ØD  | Н   |
|-------------|-----|-----|-----|-----|
| DTP-GT-C-16 | 594 | 576 | 125 | 192 |
| DTP-GT-C-24 | 594 | 576 | 125 | 192 |
| DTP-GT-C-32 | 594 | 576 | 160 | 227 |
| DTP-GT-C-36 | 594 | 576 | 160 | 227 |
| DTP-GT-C-48 | 594 | 576 | 200 | 267 |
| DTP-GT-C-54 | 594 | 576 | 200 | 267 |

La fijación del difusor frontal al plenum se realiza mediante flejes, en el caso de plenum desmontable (dimensiones indicadas).



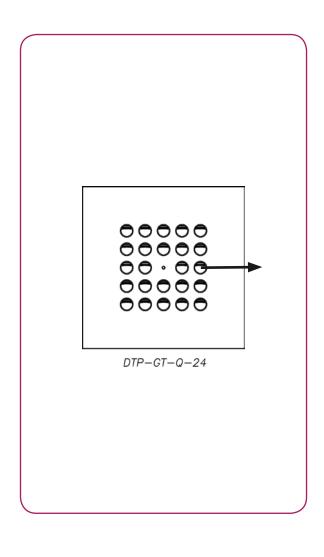
## **Modelos y dimensiones: DTP-GT-L**




| MODELO        | Α    | В    | ØD  | н   | Nº BOCAS |
|---------------|------|------|-----|-----|----------|
| DTP-GT-L-1-11 | 910  | 940  | 125 | 195 | 1        |
| DTP-GT-L-2-11 | 910  | 940  | 160 | 230 | 1        |
| DTP-GT-L-1-12 | 1010 | 1040 | 125 | 195 | 1        |
| DTP-GT-L-2-12 | 1010 | 1040 | 160 | 230 | 1        |
| DTP-GT-L-1-14 | 1210 | 1240 | 125 | 195 | 2        |
| DTP-GT-L-2-14 | 1210 | 1240 | 160 | 230 | 2        |
| DTP-GT-L-1-18 | 1510 | 1540 | 160 | 230 | 2        |
| DTP-GT-L-2-18 | 1510 | 1540 | 200 | 270 | 2        |
| DTP-GT-L-1-22 | 1810 | 1840 | 160 | 230 | 2        |
| DTP-GT-L-2-22 | 1810 | 1840 | 200 | 270 | 2        |

La fijación del difusor frontal al plenum se realiza mediante flejes, en el caso de plenum desmontable (dimensiones indicadas). También existe la posibilidad de plenum fijo (para dimensiones consulte al departamento comercial).




## Modelos y dimensiones: DTP-GT-Combi





## Tablas de selección: DTP-GT / DTP-GT-Q

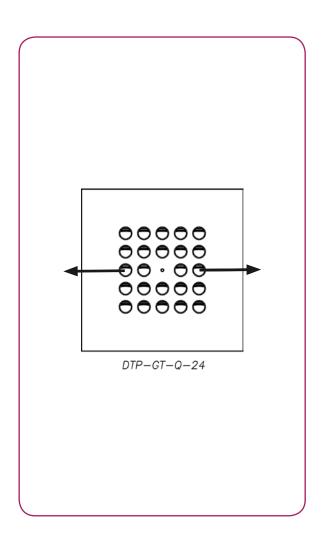
| DTP-GT-Q 1D       |       |                     |            |           |           |          |         |
|-------------------|-------|---------------------|------------|-----------|-----------|----------|---------|
|                   | Q<br> | MODELO              | 16         | 24        | 36        | 48       | 64      |
| m <sup>3</sup> /h | I/s   |                     | 1.2        |           |           |          |         |
| 75                | 20.02 | V <sub>k</sub><br>X | 1,3<br>1,9 |           |           |          |         |
| 75                | 20,83 | ΔPt                 | 2          |           |           |          |         |
|                   |       |                     | <15        |           |           |          |         |
|                   |       | L <sub>WA</sub>     | 1,7        | 1,1       |           |          |         |
| 100               | 27,8  | X                   | 2,6        | 2,1       |           |          |         |
|                   |       | ΔPt                 | 3          | 3         |           |          |         |
|                   |       | L <sub>WA</sub>     | <15        | <15       |           |          |         |
|                   |       | V <sub>k</sub>      | 2,1        | 1,4       |           |          |         |
| 125               | 34,7  | X                   | 3,2        | 2,6       |           |          |         |
|                   |       | ΔPt                 | 5          | 5         |           |          |         |
|                   |       | L <sub>WA</sub>     | 20         | 17        |           |          |         |
|                   |       | $V_k$               | 2,5        | 1,7       | 1,1       |          |         |
| 150               | 41,7  | Х                   | 3,8        | 3,1       | 2,6       |          |         |
|                   |       | ΔPt                 | 7          | 7         | 3         |          |         |
|                   |       | L <sub>WA</sub>     | 25         | 21        | 18        |          |         |
|                   |       | $V_k$               | 3,4        | 2,3       | 1,5       | 1,1      |         |
| 200               | 55,6  | Х                   | 5,1        | 4,2       | 3,4       | 3,0      |         |
|                   |       | ΔPt                 | 12         | 12        | 5         | 2        |         |
|                   |       | $L_{WA}$            | 32         | 28        | 25        | 22       |         |
|                   |       | $V_k$               | 4,2        | 2,8       | 1,9       | 1,4      | 1,1     |
| 250               | 69,4  | Х                   | 6,4        | 5,2       | 4,3       | 3,7      | 3,2     |
|                   |       | ΔPt                 | 19         | 19        | 7         | 3        | 3       |
|                   |       | L <sub>WA</sub>     | 37         | 34        | 30        | 28       | 25      |
|                   |       | $V_k$               | 5,1        | 3,4       | 2,3       | 1,7      | 1,3     |
| 300               | 83,3  | Х                   | 7,7        | 6,3       | 5,1       | 4,4      | 3,8     |
|                   |       | ΔPt                 | 28         | 28        | 10        | 4        | 4       |
|                   |       | L <sub>WA</sub>     | 42         | 38        | 35        | 32       | 29      |
| 0.50              | 07.0  | V <sub>k</sub>      | 5,9        | 4,0       | 2,6       | 2,0      | 1,5     |
| 350               | 97,2  | X                   | 9,0        | 7,3<br>38 | 6,0<br>14 | 5,2<br>6 | 4,5     |
|                   |       | ΔPt                 | 38<br>46   | 42        | 38        | 36       | 6<br>33 |
|                   |       | L <sub>WA</sub>     | 6,8        | 4,5       | 3,0       | 2,3      | 1,7     |
| 400               | 111,1 | V <sub>k</sub>      | 10,2       | 8,4       | 6,8       | 5,9      | 5,1     |
| 400               | , .   | ΔPt                 | 49         | 49        | 18        | 8        | 8       |
|                   |       | Lwa                 | 49         | 45        | 42        | 39       | 37      |
|                   |       | V <sub>k</sub>      |            | 5,1       | 3,4       | 2,5      | 1,9     |
| 450               | 125,0 | X                   |            | 9,4       | 7,7       | 6,7      | 5,8     |
|                   |       | $\Delta P_t$        |            | 62        | 23        | 10       | 10      |
|                   |       | L <sub>WA</sub>     |            | 48        | 45        | 42       | 39      |
|                   |       | V <sub>k</sub>      |            |           | 3,8       | 2,8      | 2,1     |
| 500               | 138,9 | Х                   |            |           | 8,5       | 7,4      | 6,4     |
|                   |       | $\Delta P_t$        |            |           | 29        | 12       | 12      |
|                   |       | L <sub>WA</sub>     |            |           | 47        | 45       | 42      |
|                   |       | $V_k$               |            |           |           | 3,4      | 2,5     |
| 600               | 166,7 | Х                   |            |           |           | 8,9      | 7,7     |
|                   |       | $\Delta P_t$        |            |           |           | 17       | 17      |
|                   |       | L <sub>WA</sub>     |            |           |           | 49       | 47      |
|                   |       | $V_k$               |            |           |           |          | 3,0     |
| 700               | 194,4 | X                   |            |           |           |          | 9,0     |
|                   |       | ΔPt                 |            |           |           |          | 23      |
|                   |       | L <sub>WA</sub>     |            |           |           |          | 50      |



#### SIMBOLOGÍA

V<sub>k</sub> Velocidad efectiva en m/s

X Alcance en m, para una velocidad máxima en zona ocupada de 0,25 m/s, ΔT= 0 K y una altura de instalación de 3 m, considerando efecto Coanda


P, Pérdida de carga total en Pa

 $L_{WA}$  Nivel de potencia sonora en dB(A)



## Tablas de selección: DTP-GT / DTP-GT-Q

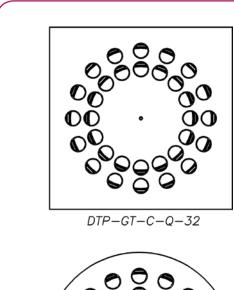
|                   | DTP-GT 2D |                       |           |           |          |         |          |
|-------------------|-----------|-----------------------|-----------|-----------|----------|---------|----------|
|                   | ג         | MODELO                | 16        | 24        | 36       | 48      | 64       |
| m <sup>3</sup> /h | l/s       |                       |           |           |          |         |          |
|                   |           | $V_k$                 | 2,1       |           |          |         |          |
| 125               | 34,72     | Х                     | 2,3       |           |          |         |          |
|                   |           | ΔPt                   | 4,8       |           |          |         |          |
|                   |           | L <sub>WA</sub>       | 20,3      |           |          |         |          |
| 450               | 44.7      | V <sub>k</sub>        | 2,5       |           |          |         |          |
| 150               | 41,7      | ΔPt                   | 2,7<br>7  |           |          |         |          |
|                   |           | L <sub>WA</sub>       | 25        |           |          |         |          |
|                   |           | V <sub>k</sub>        | 3,0       | 2,0       |          |         |          |
| 175               | 48,6      | X                     | 3,2       | 2,6       |          |         |          |
|                   | , .       | $\Delta P_t$          | 9         | 9         |          |         |          |
|                   |           | L <sub>WA</sub>       | 29        | 25        |          |         |          |
|                   |           | V <sub>k</sub>        | 3,4       | 2,3       |          |         |          |
| 200               | 55,6      | X                     | 3,7       | 3,0       |          |         |          |
|                   |           | $\Delta P_t$          | 12        | 12        |          |         |          |
|                   |           | L <sub>WA</sub>       | 32        | 28        |          |         |          |
|                   |           | $V_k$                 | 4,2       | 2,8       | 1,9      |         |          |
| 250               | 69,4      | Х                     | 4,6       | 3,7       | 3,0      |         |          |
|                   |           | $\Delta P_t$          | 19        | 19        | 7        |         |          |
|                   |           | $L_{WA}$              | 37        | 34        | 30       |         |          |
|                   |           | $V_k$                 | 5,1       | 3,4       | 2,3      |         |          |
| 300               | 83,3      | Х                     | 5,5       | 4,5       | 3,7      |         |          |
|                   |           | $\Delta P_t$          | 28        | 28        | 10       |         |          |
|                   |           | $L_{WA}$              | 42        | 38        | 35       |         |          |
|                   |           | $V_k$                 | 5,9       | 4,0       | 2,6      | 2,0     |          |
| 350               | 97,2      | Х                     | 6,4       | 5,2       | 4,3      | 3,7     |          |
|                   |           | $\Delta P_t$          | 38        | 38        | 14       | 6       |          |
|                   |           | L <sub>WA</sub>       | 46        | 42        | 38       | 36      |          |
| 400               | 444.4     | V <sub>k</sub>        | 6,8       | 4,5       | 3,0      | 2,3     | 1,7      |
| 400               | 111,1     | X                     | 7,3<br>49 | 6,0<br>49 | 4,9      | 4,2     | 3,7      |
|                   |           | $\Delta P_t$ $L_{WA}$ | 49        | 49        | 18<br>42 | 8<br>39 | 8<br>37  |
|                   |           | V <sub>k</sub>        | 49        | 5,1       | 3,4      | 2,5     | 1,9      |
| 450               | 125,0     | X                     |           | 6,7       | 5,5      | 4,8     | 4,1      |
| 100               | 120,0     | $\Delta P_t$          |           | 62        | 23       | 10      | 10       |
|                   |           | L <sub>WA</sub>       |           | 48        | 45       | 42      | 39       |
|                   |           | V <sub>k</sub>        |           |           | 3,8      | 2,8     | 2,1      |
| 500               | 138,9     | X                     |           |           | 6,1      | 5,3     | 4,6      |
|                   |           | $\Delta P_t$          |           |           | 29       | 12      | 12       |
|                   |           | $L_{WA}$              |           |           | 47       | 45      | 42       |
|                   |           | $V_k$                 |           |           |          | 3,4     | 2,5      |
| 600               | 166,7     | Х                     |           |           |          | 6,3     | 5,5      |
|                   |           | $\Delta P_{t}$        |           |           |          | 17      | 17       |
|                   |           | $L_{WA}$              |           |           |          | 49      | 47       |
|                   |           | $V_k$                 |           |           |          |         | 3,0      |
| 700               | 194,4     | Х                     |           |           |          |         | 6,4      |
|                   |           | $\Delta P_t$          |           |           |          |         | 23       |
|                   |           | L <sub>WA</sub>       |           |           |          |         | 50       |
|                   | 000.0     | V <sub>k</sub>        |           |           |          |         | 3,4      |
| 800               | 222,2     | X                     |           |           |          |         | 7,3      |
|                   |           | ΔP <sub>t</sub>       |           |           |          |         | 30<br>54 |
| Щ                 |           | $L_{WA}$              |           |           |          |         | 54       |

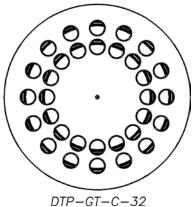


#### SIMBOLOGÍA

V<sub>k</sub> Velocidad efectiva en m/s

X Alcance en m, para una velocidad máxima en zona ocupada de 0,25 m/s, ΔT= 0 K y una altura de instalación de 3 m, considerando efecto Coanda


P, Pérdida de carga total en Pa


 $L_{WA}$  Nivel de potencia sonora en dB(A)



## Tablas de selección: DTP-GT-C / DTP-GT-C-Q

|                   |       | DTF                     | -GT-C     | Q/DTP     | -GT-C    |          |          |          |
|-------------------|-------|-------------------------|-----------|-----------|----------|----------|----------|----------|
|                   | Q<br> | MODELO                  | 16        | 24        | 32       | 36       | 48       | 54       |
| m <sup>3</sup> /h | I/s   | V <sub>k</sub>          | 1,3       |           |          |          |          |          |
| 75                | 20,8  | V <sub>k</sub>          | 1,0       |           |          |          |          |          |
| 70                | 20,0  | $\Delta P_t$            | 2         |           |          |          |          |          |
|                   |       | L <sub>WA</sub>         | <15       |           |          |          |          |          |
|                   |       | V <sub>k</sub>          | 1,7       | 1,1       |          |          |          |          |
| 100               | 27,8  | X                       | 1,4       | 1,1       |          |          |          |          |
|                   |       | $\Delta P_t$            | 3         | 3         |          |          |          |          |
|                   |       | L <sub>WA</sub>         | <15       | <15       |          |          |          |          |
|                   |       | $V_k$                   | 2,1       | 1,4       | 1,1      |          |          |          |
| 125               | 34,7  | Х                       | 1,7       | 1,4       | 1,2      |          |          |          |
|                   |       | $\Delta P_t$            | 5         | 5         | 2        |          |          |          |
|                   |       | $L_{WA}$                | 20        | 17        | <15      |          |          |          |
|                   |       | $V_k$                   | 2,5       | 1,7       | 1,3      | 1,1      |          |          |
| 150               | 41,7  | X                       | 2,1       | 1,7       | 1,5      | 1,4      |          |          |
|                   |       | $\Delta P_t$            | 7         | 7         | 3        | 3        |          |          |
|                   |       | L <sub>WA</sub>         | 25        | 21        | 19       | 18       |          |          |
|                   |       | $V_k$                   | 3,4       | 2,3       | 1,7      | 1,5      | 1,1      | 1,0      |
| 200               | 55,6  | X                       | 2,7       | 2,2       | 1,9      | 1,8      | 2,6      | 3,5      |
|                   |       | $\Delta P_t$            | 12        | 12        | 5        | 5        | 2        | 2        |
|                   |       | L <sub>WA</sub>         | 32        | 28        | 26       | 25       | 22       | 21       |
| 050               | 00.4  | $V_k$                   | 4,2       | 2,8       | 2,1      | 1,9      | 1,4      | 1,3      |
| 250               | 69,4  | X                       | 3,4<br>19 | 2,8<br>19 | 2,4<br>7 | 2,3<br>7 | 3,3<br>3 | 4,4      |
|                   |       | $\Delta P_t$ $L_WA$     | 37        | 34        | 31       | 30       | 28       | 3<br>26  |
|                   |       | V <sub>k</sub>          | 5,1       | 3,4       | 2,5      | 2,3      | 1,7      | 1,5      |
| 300               | 83,3  | X                       | 4,1       | 3,4       | 2,9      | 2,7      | 4,0      | 5,2      |
| 300               | 00,0  | $\Delta P_t$            | 28        | 28        | 10       | 10       | 4        | 4        |
|                   |       | L <sub>WA</sub>         | 42        | 38        | 36       | 35       | 32       | 31       |
|                   |       | V <sub>k</sub>          | 5,9       | 4,0       | 3,0      | 2,6      | 2,0      | 1,8      |
| 350               | 97,2  | Х                       | 4,8       | 3,9       | 3,4      | 3,2      | 4,6      | 6,1      |
|                   |       | $\Delta P_t$            | 38        | 38        | 14       | 14       | 6        | 6        |
|                   |       | $L_{WA}$                | 46        | 42        | 39       | 38       | 36       | 35       |
|                   |       | $V_k$                   | 6,8       | 4,5       | 3,4      | 3,0      | 2,3      | 2,0      |
| 400               | 111,1 | Χ                       | 5,5       | 4,5       | 3,9      | 3,7      | 5,3      | 7,0      |
|                   |       | $\Delta P_t$            | 49        | 49        | 18       | 18       | 8        | 8        |
|                   |       | $L_{WA}$                | 49        | 45        | 43       | 42       | 39       | 38       |
|                   |       | $V_k$                   |           | 5,1       | 3,8      | 3,4      | 2,5      | 2,3      |
| 450               | 125,0 | X                       |           | 5,0       | 4,4      | 4,1      | 5,9      | 7,8      |
|                   |       | $\Delta P_t$            |           | 62        | 23       | 23       | 10       | 10       |
|                   |       | L <sub>WA</sub>         |           | 48        | 46       | 45       | 42       | 41       |
| F00               | 120.0 | V <sub>k</sub>          |           |           | 4,2      | 3,8      | 2,8      | 2,5      |
| 500               | 138,9 | $X$ $_{\DeltaP_{t}}$    |           |           | 4,9      | 4,6      | 6,6      | 8,7      |
|                   |       | $\Delta P_{t}$ $L_{WA}$ |           |           | 29<br>48 | 29<br>47 | 12<br>45 | 12<br>44 |
|                   |       | V <sub>k</sub>          |           |           | 70       | 71       | 3,4      | 3,0      |
| 600               | 166,7 | V <sub>k</sub>          |           |           |          |          | 7,9      | 10,5     |
| 300               | .00,1 | ΔP <sub>t</sub>         |           |           |          |          | 17       | 17       |
|                   |       | L <sub>WA</sub>         |           |           |          |          | 49       | 48       |
|                   |       | V <sub>k</sub>          |           |           |          |          |          | 3,3      |
| 650               | 180,6 | X                       |           |           |          |          |          | 11,3     |
|                   | ,     | $\Delta P_t$            |           |           |          |          |          | 20       |
|                   |       | L <sub>WA</sub>         |           |           |          |          |          | 50       |
|                   |       |                         |           |           |          |          |          |          |

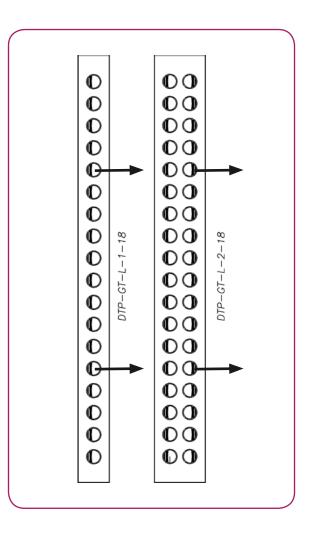




#### SIMBOLOGÍA

V<sub>k</sub> Velocidad efectiva en m/s

X Alcance en m, para una velocidad máxima en zona ocupada de 0,25 m/s, ΔT= 0 K y una altura de instalación de 3 m, considerando efecto Coanda


P, Pérdida de carga total en Pa

 $L_{MA}$  Nivel de potencia sonora en dB(A)



## Tabla de selección: DTP-GT-L

| DTP-GT-L 1D |       |                 |        |        |        |        |        |        |
|-------------|-------|-----------------|--------|--------|--------|--------|--------|--------|
|             | Q     | MODELO          | 1000-1 | 1200-1 | 1500-1 | 1000-2 | 1200-2 | 1500-2 |
| m³/h        | I/s   | (Toberas)       | 12     | 14     | 18     | 24     | 28     | 36     |
|             |       | $V_k$           | 1,7    | 1,5    | 1,1    |        |        |        |
| 75          | 20,8  | Х               | 2,0    | 1,8    | 1,6    |        |        |        |
|             |       | $\Delta P_t$    | 2      | 2      | 1      |        |        |        |
|             |       | $L_{WA}$        | <15    | <15    | <15    |        |        |        |
|             |       | $V_k$           | 2,3    | 1,9    | 1,5    | 1,1    | 1,0    |        |
| 100         | 27,8  | Х               | 2,6    | 2,4    | 2,2    | 1,9    | 1,7    |        |
|             |       | $\Delta P_t$    | 3      | 3      | 1      | 1      | 1      |        |
|             |       | $L_{WA}$        | 17     | 16     | <15    | <15    | <15    |        |
|             |       | $V_k$           | 2,8    | 2,4    | 1,9    | 1,4    | 1,2    |        |
| 125         | 34,7  | Х               | 3,3    | 3,1    | 2,7    | 2,3    | 2,2    |        |
|             |       | $\Delta P_t$    | 5      | 5      | 2      | 2      | 2      |        |
|             |       | $L_{WA}$        | 23     | 22     | 19     | 17     | 15     |        |
|             |       | $V_k$           | 3,4    | 2,9    | 2,3    | 1,7    | 1,5    | 1,1    |
| 150         | 41,7  | Х               | 4,0    | 3,7    | 3,2    | 2,8    | 2,6    | 2,3    |
|             |       | $\Delta P_t$    | 7      | 7      | 3      | 3      | 3      | 1      |
|             |       | $L_{WA}$        | 27     | 26     | 24     | 21     | 20     | 18     |
|             |       | $V_k$           | 4,0    | 3,4    | 2,6    | 2,0    | 1,7    | 1,3    |
| 175         | 48,6  | Х               | 4,6    | 4,3    | 3,8    | 3,3    | 3,0    | 2,7    |
|             |       | $\Delta P_t$    | 9      | 9      | 4      | 4      | 4      | 1      |
|             |       | L <sub>WA</sub> | 31     | 30     | 28     | 25     | 24     | 21     |
|             |       | $V_k$           | 4,5    | 3,9    | 3,0    | 2,3    | 1,9    | 1,5    |
| 200         | 55,6  | X               | 5,3    | 4,9    | 4,3    | 3,7    | 3,5    | 3,0    |
|             |       | $\Delta P_t$    | 12     | 12     | 5      | 5      | 5      | 2      |
|             |       | $L_{WA}$        | 35     | 33     | 31     | 28     | 27     | 25     |
|             |       | $V_k$           | 5,7    | 4,9    | 3,8    | 2,8    | 2,4    | 1,9    |
| 250         | 69,4  | X               | 6,6    | 6,1    | 5,4    | 4,7    | 4,3    | 3,8    |
|             |       | $\Delta P_t$    | 19     | 19     | 7      | 7      | 7      | 3      |
|             |       | L <sub>WA</sub> | 40     | 39     | 36     | 34     | 32     | 30     |
|             |       | $V_k$           | 6,8    | 5,8    | 4,5    | 3,4    | 2,9    | 2,3    |
| 300         | 83,3  | X               | 7,9    | 7,3    | 6,5    | 5,6    | 5,2    | 4,6    |
|             |       | $\Delta P_t$    | 28     | 28     | 10     | 10     | 10     | 4      |
| <u> </u>    |       | L <sub>WA</sub> | 45     | 43     | 41     | 38     | 37     | 35     |
|             |       | $V_k$           | 7,9    | 6,8    | 5,3    | 4,0    | 3,4    | 2,6    |
| 350         | 97,2  | Х               | 9,2    | 8,6    | 7,5    | 6,5    | 6,1    | 5,3    |
|             |       | $\Delta P_t$    | 38     | 38     | 14     | 14     | 14     | 6      |
| $\vdash$    |       | L <sub>WA</sub> | 48     | 47     | 45     | 42     | 41     | 38     |
|             |       | $V_k$           |        |        | 6,0    | 4,5    | 3,9    | 3,0    |
| 400         | 111,1 | Х               |        |        | 8,6    | 7,5    | 6,9    | 6,1    |
|             |       | $\Delta P_t$    |        |        | 18     | 18     | 18     | 8      |
| <u> </u>    |       | L <sub>WA</sub> |        |        | 48     | 45     | 44     | 42     |
|             |       | V <sub>k</sub>  |        |        |        | 5,1    | 4,4    | 3,4    |
| 450         | 125,0 | X               |        |        |        | 8,4    | 7,8    | 6,9    |
|             |       | $\Delta P_t$    |        |        |        | 23     | 23     | 10     |
|             |       | L <sub>WA</sub> |        |        |        | 48     | 47     | 45     |
|             |       | V <sub>k</sub>  |        |        |        |        |        | 3,8    |
| 500         | 138,9 | X               |        |        |        |        |        | 7,6    |
|             |       | $\Delta P_t$    |        |        |        |        |        | 12     |
|             |       | L <sub>WA</sub> |        |        |        |        |        | 47     |



#### SIMBOLOGÍA

- V<sub>k</sub> Velocidad efectiva en m/s
- X Alcance en m, para una velocidad máxima en zona ocupada de 0,25 m/s, ΔT= 0 K y una altura de instalación de 3 m, considerando efecto Coanda
- P, Pérdida de carga total en Pa
- $L_{WA}$  Nivel de potencia sonora en dB(A)



## Codificación

Mediante la codificación adjunta, se define tanto el difusor como el plenum:

| DTP-GT                                    | Difusor de microtoberas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C<br>Q<br>C<br>L<br>C-Q<br>Combi          | Placa cuadrada Placa cuadrada 594 x 594 Placa circular Lineal Placa cuadrada 594 x 594 con toberas en disposición circular Impusión / Retorno                                                                                                                                                                                                                                                                                                                                                            |
| 1<br>2<br>3<br>4<br>R                     | Una dirección Dos direcciones Tres direcciones Cuatro direcciones Radial                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                           | Nº Toberas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PF-C PD-C PFA PDA PFA-C PDA-C PDA-C PM PZ | Sin plenum Plenum fijo sin compuerta Plenum desmontable para difusor con flejes sin compuerta Plenum fijo con compuerta Plenum desmontable para difusor con flejes con compuerta Plenum fijo aislado sin compuerta Plenum desmontable para difusor con flejes aislado sin compuerta Plenum fijo aislado con compuerta Plenum fijo aislado con compuerta Plenum desmontable para difusor con flejes aislado con compuerta Con puente de montaje para difusor sin plenum Con puente de montaje para plenum |
| RAL 9010<br>RAL                           | Acabado estándar en color blanco<br>Acabado en otro RAL                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### Especificación técnica:

DTP-GT-C-R- 54-PFA-C RAL 9010

Difusor de microtoberas en placa circular compuesto de 54 toberas, con plenum fijo aislado y compuerta de regulación en boca, pintado en blanco RAL 9010.

#### Otros diseños:

Fácilmente integrables en la decoración del local, las toberas pueden instalarse en ejecuciones diversas.





#### ESTE CATÁLOGO ES PROPIEDAD INTELECTUAL.

Queda prohibida la reproducción parcial o total de su contenido sin autorización expresa y fehaciente de KOOLAIR, S.L.

## 

#### KOOLAIR, S.L.

Calle Urano, 26 Poligono industrial nº 2 – La Fuensanta 28936 Móstoles - Madrid - (España)

Tel: +34 91 645 00 33 Fax: +34 91 645 69 62 e-mail: info@koolair.com