

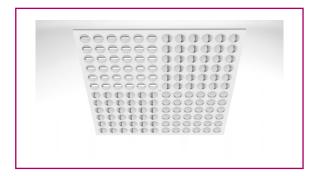
série

Difusores de microtubeiras

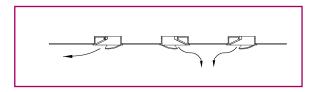
www.koolair.com

Série DTP

1


ÍNDICE

Introdução	2
Modelos e dimensões	3
Quadros de selecção	7
Codificação	11



Difusor de microtubeiras

Descrição

O DTP, difusor de microtubeiras, foi concebido para resolver qualquer problema de difusão tanto convencional como específico, adaptando-se às múltiplas e diferenciadas situações que se colocam numa correcta difusão. Encontramo-nos perante um produto versátil, com uma estética diferente que permite cobrir as necessidades do design de interiores, com um baixo nível sonoro e excelente comportamento.

Constituídos por pequenas tubeiras orientáveis individualmente em todas as direcções. Por serem orientáveis permitem ser ajustados na colocação em funcionamento, resolvendo os pequenos problemas que por vezes surgem, nos quais o excesso ou falta de ar em determinadas zonas podem originar inconvenientes na insuflação.

Cumprem os seguintes requisitos:

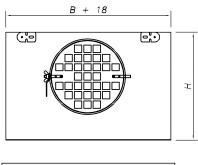
- Elevado grau de difusão de ar em qualquer direcção.
- Aplicável em instalações de caudal constante e variável.
- Utilizável tanto em insuflação de ar frio como quente (fluxo horizontal ou vertical).
- · Baixo nível sonoro.
- Flexibilidade na integração em qualquer tipo de decoração ou design interior.
- Possibilidade de modificar em obra e ajustar múltiplas orientações do jacto de ar: radial, linear, rotativo, vertical.

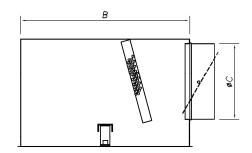
Utilização

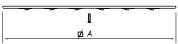
A sua integração em tecto falso torna-o especialmente indicado para edifícios de escritórios, hotéis, restaurantes, salas de exposições, bancos, bibliotecas, etc. Pode igualmente ser colocado em condutas, em plenos decorativos, na parede, no pavimento ou em parapeitos de janelas.

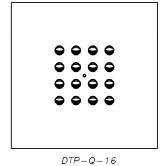
O comportamento é similar a um difusor linear com fluxo horizontal, produzindo-se o "efeito coanda" mantendo uma circulação uniforme e uma elevada insuflação. Para obter o fluxo de ar vertical basta confrontar dois ou mais tubeiras.

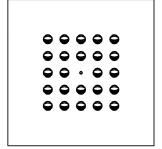
Acabamentos

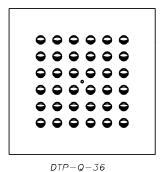

Microtubeiras fabricadas em material plástico ABS-VO na cor branca e placa em chapa de aço. Acabamento padrão em RAL 9010 brilhante.

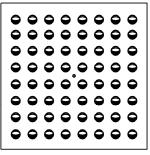

Pleno de ligação em chapa de aço galvanizado com chapa de equalização interior para garantir uma correcta distribuição do ar e bocal de entrada, de diâmetro normalizado segundo ISO, com comporta de regulação manual.


Existe também a possibilidade de integrar um servomotor eléctrico para aplicações em sistemas VAV. Outros acabamentos especiais podem ser fornecidos a pedido e com consulta prévia ao nosso departamento comercial.



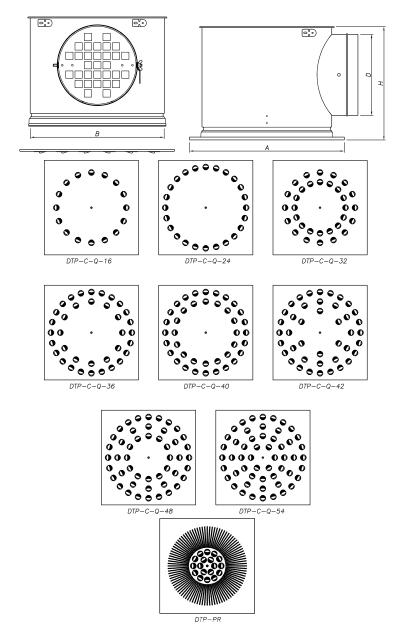

Modelos e dimensões: DTP-Q / DTP





DTP-Q-24

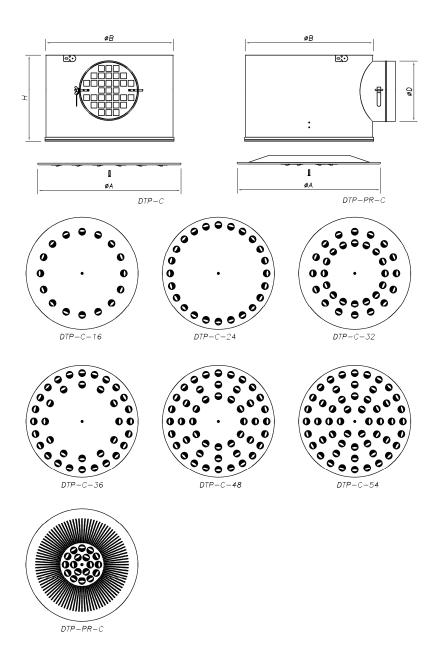
DTP-Q-48


DTP-Q-64

MODELO	Α	В	Ø D	Ξ
DTP-Q-16	594	270	125	225
DTP-Q-24	594	350	125	225
DTP-Q-36	594	410	160	250
DTP-Q-48	594	488	200	300
DTP-Q-64	594	550	200	300
DTP-16	594	270	125	225
DTP-24	444	350	125	225
DTP-36	494	410	160	250
DTP-48	554	488	200	300
DTP-64	594	550	200	300

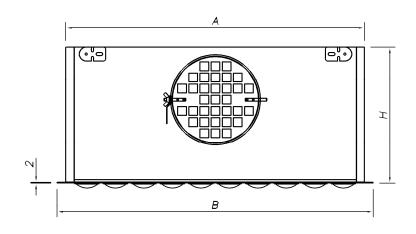
A fixação do difusor frontal ao pleno efectua-se através de um único parafuso central, no caso de pleno desmontável (dimensões indicadas).

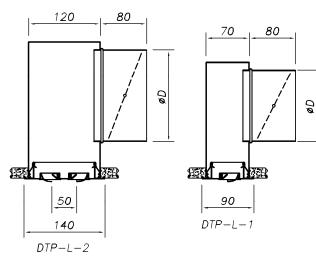
Modelos e dimensões: DTP-C-Q / DTP-PR



MODELO	А	ØВ	Ø D	н
DTP-C-Q-16	594	580	125	200
DTP-C-Q-24	594	580	125	200
DTP-C-Q-32	594	580	160	235
DTP-C-Q-36	594	580	160	235
DTP-C-Q-40	594	580	200	275
DTP-C-Q-42	594	580	200	275
DTP-C-Q-48	594	580	200	275
DTP-C-Q-54	594	580	200	275
DTP-PR	594	580	200	275

A fixação do difusor frontal ao pleno efectua-se através de um único parafuso central, no caso de pleno desmontável (dimensões indicadas).


Modelos e dimensões: DTP-C / DTP-PR-C



MODELO	Ø A	ØВ	Ø D	H
DTP-C-16	594	576	125	192
DTP-C-24	594	576	125	492
DTP-C-32	594	576	160	227
DTP-C-36	594	576	160	227
DTP-C-48	594	576	200	267
DTP-C-54	594	576	200	267
DTP-PR-C	594	576	200	267

Modelos e dimensões: DTP-L

0000000000000000

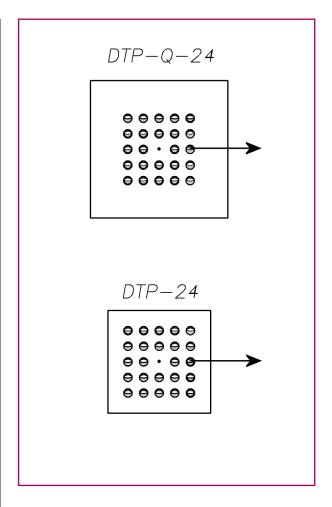
DTP-L-1-18

0000000000000000000

DTP-L-1-20

00000000000000000

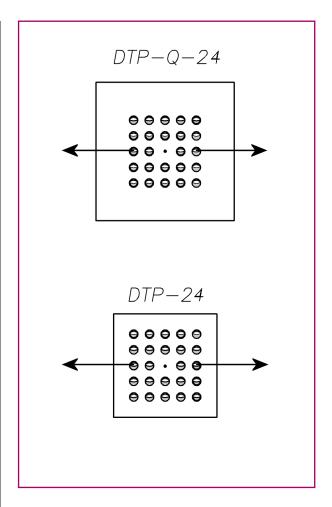
DTP-L-2-18


DTP-L-2-20

MODELO	А	В	Ø D	Н
DTP-L-1-18	910	940	125	195
DTP-L-2-18	910	940	160	230
DTP-L-1-20	1010	1040	125	195
DTP-L-2-20	1010	1040	160	230
DTP-L-1-24	1210	1240	125	195
DTP-L-2-24	1210	1240	160	230
DTP-L-1-30	1510	1540	160	230
DTP-L-2-30	1510	1540	200	270
DTP-L-1-36	1810	1840	160	230
DTP-L-2-36	1810	1840	200	270

Quadros de selecção: DTP / DTP-Q

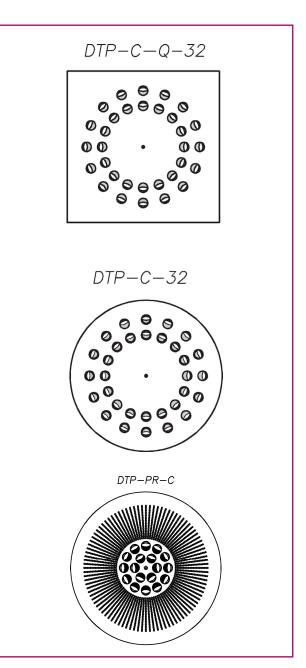
DTP / DTP-Q (1 direcção)							
m³/h	Q I/s	Modelo	16	24	36	48	64
		V _k	3,9	2,5			
50	13,9	X	2,5	1,0			
00	10,0	ΔP_{t}	12	6			
		L _{WA}	<15	<15			
		V_k	6,3	4,0	2,8		
80	22,2	Х	3,9	3,2	2,6		
	,_	ΔP_{t}	32	16	8		
		L _{WA}	19	<15	<15		
		V _k	7,9	5,1	3,5	2,6	
100	27,8	X	4,9	3,9	3,3	2,8	
		ΔP _t	50	25	12	5	
		L _{WA}	26	16	<15	<15	0.5
		V _k	9,9	6,3	4,4	3,2	2,5
125	34,7	X	6,2	4,9	4,1	3,5	3,1
		ΔP _t	78	40	19	9	3
		L _{WA}	33 11,8	23 7,6	15 5,3	<15 3,9	<15 2,0
		V _k	7,4		4,9	4,2	
150	41,7	ΔP _t	113	5,9 58	28	13	3,7
			39	29	21	<15	<15
		L _{WA}	39	8,8	6,1	4,5	3,5
		X	-	6,9	5,7	4,9	4,3
175	48,6	ΔP_{t}	+	79	38	17	6
		L _{WA}	+	34	26	19	<15
		V _k		10,1	7,0	5,2	3,9
		X	-	7,9	6,6	5,6	4,9
200	55,6	ΔP_{t}	1	103	50	23	8
		L _{WA}	1	38	30	23	18
		V _k			8,8	6,4	4,9
		X	1		8,2	7,0	6,2
250	69,4	ΔP_{t}			79	36	13
		L _{WA}	1		37	30	25
		V _k			10,5	7,7	5,9
	00.0	Х	1		9,9	8,4	7,4
300	83,3	ΔP_{t}			114	52	18
		L _{WA}			43	36	30
		V_k				9,0	6,9
350	97,2	Х				9,9	8,6
330	51,2	ΔP_t				71	25
		L _{WA}				41	35
		V_k	1			10,3	7,9
400	400 111,1	X	1			11,3	9,9
	,.	ΔP_{t}	_			93	33
		L _{WA}				45	39
	V _k	1				9,9	
500	138,9	X	4				12,3
	,	ΔP _t	4				52
		L _{WA}					47
		V _k	-				11,8
600	166,7	X	-				14,8
		ΔP _t	-				75 52
	L _{WA}	1	<u> </u>	1	<u> </u>	52	



- **V**_k Velocidade efectiva em m/s
- X Alcance em m, para uma velocidade máxima em zona ocupada de 0,25 m/s, ΔT= 0 K e uma altura de instalação de 3 m, considerando o efeito Coanda
- Pt Perda de carga total em Pa
- L_{wa} Nível de potência sonora em dB(A)

Quadros de selecção: DTP / DTP-Q

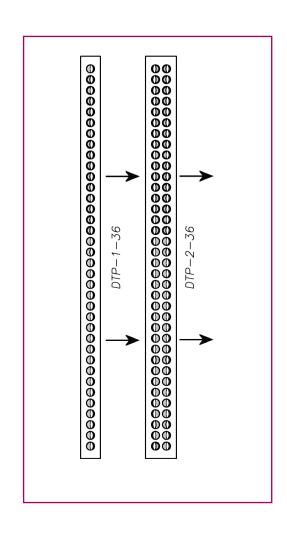
	DTP / DTP-Q (1 direcção)						
2,11	Q 	Modelo	16	24	36	48	64
m³/h	I/s	V	3,9	2,5			
		V _k	2,5	1,0	+		
50	13,9	ΔP_{t}	12	6	1		
		L _{WA}	<15	<15	1		
		V _k	6,3	4,0	2,8		
		X	3,9	3,2	2,6		
80	22,2	ΔP_{t}	32	16	8		
		L _{WA}	19	<15	<15		
		V _k	7,9	5,1	3,5	2,6	
		X	4,9	3,9	3,3	2,8	
100	27,8	ΔP,	50	25	12	5	
		L _{WA}	26	16	<15	<15	
		V _k	9,9	6,3	4,4	3,2	2,5
		X	6,2	4,9	4,1	3,5	3,1
125	34,7	ΔP_{t}	78	40	19	9	3
		L _{WA}	33	23	15	<15	<15
		V _k	11,8	7,6	5,3	3,9	2,0
4		X	7,4	5,9	4,9	4,2	3,7
150	41,7	ΔP_{t}	113	58	28	13	4
		L _{WA}	39	29	21	<15	<15
		V _k		8,8	6,1	4,5	3,5
	40.0	X	1	6,9	5,7	4,9	4,3
175	48,6	ΔP_{t}	1	79	38	17	6
		L _{WA}	1	34	26	19	<15
		V_k		10,1	7,0	5,2	3,9
200	55.0	X	1	7,9	6,6	5,6	4,9
200	55,6	ΔP_{t}	1	103	50	23	8
		L _{WA}	1	38	30	23	18
		V_k			8,8	6,4	4,9
250	69,4	X			8,2	7,0	6,2
250	09,4	ΔP_{t}			79	36	13
		L _{wa}			37	30	25
		V_k	_		10,5	7,7	5,9
300	83,3	Х			9,9	8,4	7,4
000	00,0	ΔP_{t}			114	52	18
		L _{WA}			43	36	30
		V_k	1			9,0	6,9
350	97,2	Х	_			9,9	8,6
		ΔP_{t}	_			71	25
		L _{WA}			1	41	35
		V _k	1			10,3	7,9
400	400 111,1	X	4			11,3	9,9
	,	ΔP _t	_			93	33
		L _{WA}				45	39
		V _k	4				9,9
500	138,9	X	-				12,3
		ΔP _t	-				52
		L _{WA}			1		47
		V _k	-				11,8
600	166,7	X	-				14,8 75
		ΔP _t	-				
	L _{wa}	1			<u> </u>	52	



- V_k Velocidade efectiva em m/s
- **X** Alcance em m, para uma velocidade máxima em zona ocupada de 0,25 m/s, Δ T= 0 K e uma altura de instalação de 3 m, considerando o efeito Coanda
- P_t Perda de carga total em Pa
- L_{wa} Nível de potência sonora em dB(A)

Quadros de selecção: DTP-C / DTP-C-Q / DTP-PR

	DTP-C / DTP-C-Q								
	Q	Modelo	16	24	32	36	48	54	DTP-PR
m³/h	l/s	Wodelo	10	24	52	30	7	34	DII -I K
		V_k	3,9	2,6					
50	13,9	Х	1,5	1,2					
30	10,9	ΔP_t	15	7					
		L_{WA}	22	<15					
		V_k	6,3	4,2	3,2	2,8			
80	22,2	Х	2,4	1,9	1,7	1,6			
00	22,2	ΔP_t	38	18	10	8			
		L_{WA}	35	23	<15	<15			
		V_k	7,9	5,3	3,9	3,5	2,6		
100	27,8	Х	2,0	2,4	2,1	1,0	1,7		
100	21,0	ΔP_t	60	28	15	12	7		
		L _{WA}	41	29	20	17	<15		
		V_k	9,9	6,6	4,9	4,4	3,3	2,9	1
125	34,7	Х	3,7	3,0	2,6	2,5	2,1	2,0	
	O 1,1	ΔP_t	93	44	24	19	11	9	
		L _{wa}	47	35	26	23	<15	<15	
		V_k	11,8	7,9	5,9	5,3	3,9	3,5	
150	41,7	Х	4,4	3,6	3,1	2,0	2,6	2,4	_
100	41,7	ΔP_t	135	63	35	28	16	14	
		L _{WA}	52	40	31	28	19	16	
		V_k		9,2	6,9	6,1	4,6	4,1	1,4
175	75 48,6	Х		4,2	3,7	3,4	2,0	2,8	1
		ΔP_t		87	47	39	22	19	6,2
		L _{WA}		44	36	32	24	22	<15
		V _k		10,5	7,9	7,0	5,3	4,7	1,6
200	55,6	X		4,8	4,2	3,9	3,4	3,2	1,2
	, .	ΔP_t		113	62	51	29	25	8
		L _{WA}		48	39	36	29	26	21
		V _k			9,9	8,8	6,6	5,8	2
250	69,4	X			5,2	4,9	4,3	4,0	1,5
	,	ΔP_{t}			97	79	46	39	13
		L _{WA}			45	42	36	34	27
		V _k			11,8	10,5	7,9	7,0	2,4
300	83,3	X			6,3	5,9	5,1	4,8	1,8
	,	ΔP _t			140	115	67	56	18
		L _{WA}			50	47	43	40	32
		V _k	l			12,3	9,2	8,2	2,7
350	97,2	X	l			6,9	5,0	5,6	2,1
	,	ΔP_{t}				156	91	76	25
		L _{WA}				51	48	46	37
		V _k	l				10,5	9,4	3,1
400	111,1	X	l				6,8	6,4	2,4
		ΔP _t	l				119	100	32
		L _{WA}					53	50	40
		V _k	l					11,7	3,9
500	138,9	X	l					8,0	3
		ΔP _t						157	51
	L _{WA}	<u> </u>	<u> </u>		<u> </u>		58	47	



- V_k Velocidade efectiva em m/s
- X Alcance em m, para uma velocidade máxima em zona ocupada de 0,25 m/s, ΔT= 0 K e uma altura de instalação de 3 m, considerando o efeito Coanda
- Pt Perda de carga total em Pa
- L_{wa} Nível de potência sonora em dB(A)

Quadro de selecção: DTP-L

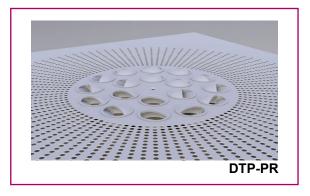
	DTP - L (1 direcção)							
3/15	Q U-	Modelo (codificação)	1000-1	1200-1 (1-24)	1500-1	1000-2	1200-2	1500-2
m³/h	I/s	` '	(1-20)	` '	(1-30)	(2-20)	(2-24)	(2-30)
		V _k	3,2	2,6	2,1			
50	13,9	ΔP,	2,2	2,0	1,8 4			
			9 <15	6 <15	<15	ļ		
-		L _{WA}	5,1	4,2	3,4	2,5	2,1	
		V _k	3,5	3,2	2,9	2,5	2,1	1
80	22,2	ΔP,	23	17	11	6	4	
			<15	<15	<15	<15	<15	
		L _{WA}	6,3	5,3	4,2	3,2	2,6	2,1
		X	4,4	4,0	3,6	3,1	2,8	2,5
100	27,8	ΔP,	36	27	17	10	6	2
		L _{WA}	21	17	<15	<15	<15	<15
		V _k	7,9	6,6	5,3	3,9	3,3	2,6
		X	5,5	5,0	4,5	3,9	3,6	3,2
125	34,7	ΔP,	56	43	27	16	10	4
		L _{WA}	28	24	19	<15	<15	<15
		V _k	9,5	7,9	6,3	4,7	3,9	3,2
		X	6,6	6,0	5,4	4,7	4,3	3,8
150	41,7	ΔP,	81	62	39	23	15	6
		L _{WA}	34	30	25	19	15	<15
		V _k	11,0	9,2	7,4	5,5	4,6	3,7
		X	7,7	7,0	6,3	5,5	4,0	4,5
175	175 48,6	ΔP,	110	84	54	31	20	8
		L _{WA}	39	35	30	24	20	15
		V _k	12,6	10,5	8,4	6,3	5,3	4,2
	55.0	X	8,8	8,0	7,2	6,2	5,7	5,1
200	55,6	ΔP_{t}	144	110	70	41	27	11
		L _{wa}	43	39	34	28	24	19
		V_k		13,2	10,5	7,9	6,6	5,3
250	69,4	Х		10,1	8,0	7,8	7,1	6,4
250	09,4	ΔP_{t}		172	110	64	42	18
		L _{wa}		46	41	35	31	26
		V_k			12,6	9,5	7,9	6,3
300	83,3	Х			10,8	9,4	8,5	7,6
000	00,0	ΔP_{t}			159	92	61	25
		L _{WA}			47	41	37	32
		V_k				11,0	9,2	7,4
350	97,2	Х				10,9	9,0	8,9
	0.,2	ΔP_{t}				126	83	35
		L _{WA}				46	42	37
		V _k					10,5	8,4
400	111,1	X					11,4	10,2
		ΔP _t					109	46
		L _{WA}					46	41
		V _k						10,5
500	138,9	X						12,7
	100,0	ΔP_{t}						72
		L _{WA}						48
		V _k						12,6
600	166,7							15,3
		ΔP _t						103 54
	<u> </u>	L _{wa}						54

- V_k Velocidade efectiva em m/s
- X Alcance em m, para uma velocidade máxima em zona ocupada de 0,25 m/s, ΔT = 0 K e uma altura de instalação de 3 m, considerando o efeito Coanda
- P_t Perda de carga total em Pa
- L_{wa} Nível de potência sonora em dB(A)

Codificação

Através da codificação junta, define-se tanto o difusor como o plenum:

DTP	Difusor de microbocais
 Q C L C-Q PR PR-C	Placa quadrada Placa quadrada 594 x 594 Placa circular Linear Placa quadrada 594 x 594 com bocais em disposição circular Placa quadrada 594 x 594 com perfuração Placa circular com perfuração
1 2 3 4 R	Uma direcção Duas direcções Três direcções Quatro direcções Radial
	Nº d bocais
PF PD PF-C PD-C PFA PDA PFA-C PDA-C PM PZ	Sem pleno Pleno fixo sem comporta Pleno desmontável sem comporta Pleno fixo com comporta Pleno desmontável com comporta Pleno fixo isolado sem comporta Pleno desmontável isolado sem comporta Pleno desmontável isolado sem comporta Pleno fixo isolado com comporta Pleno desmontável isolado com comporta Com ponte de montagem para difusor sem pleno Com ponte de montagem para pleno
RAL 9010 RAL	Acabamento padrão em cor branca Acabamento noutro RAL


Especificação técnica:

DTP-C-R- 54-PFA-C RAL 9010

Difusor de microbocais em placa circular composto por 54 bocais, com pleno fixo isolado e comporta de regulação na boca, pintado em branco RAL 9010.

Outros modelos:

Facilmente integráveis na decoração do local, os bocais podem ser instalados em diferentes execuções.

ESTE CATÁLOGO É PROPRIEDADE INTELECTUAL.

Fica proibida a reprodução parcial ou total do seu conteúdo sem autorização expressa e formal da KOOLAIR, S.L.

KOOLAIR, S.L.

Calle Urano, 26 Poligono industrial nº 2 – La Fuensanta 28936 Móstoles - Madrid - (España)

Tel: +34 91 645 00 33 Fax: +34 91 645 69 62 e-mail: info@koolair.com