# 

# série

# 

Difusores de pás de geometria variável



www.koolair.com





## **ÍNDICE**

| Difusor de | pás | geometria | variável | DVP |
|------------|-----|-----------|----------|-----|
|------------|-----|-----------|----------|-----|

| Generalidades             | 2 |
|---------------------------|---|
| Tabela de selecção rápida | 4 |
| Gráficos de selecção      | 6 |





# Difusor de geometría variable de pás DVP



#### Descrição

O difusor de geometria variável de pás, modelo DVP, permite trabalhar em configuração de Verão (descarga horizontal) e Inverno (descarga vertical) através do movimento das pás, conseguindo cumprir os critérios de conforto requeridos. A sua gama consta de 9 tamanhos desde os Ø160 mm até Ø 800 mm em accionamento manual e 6 tamanhos desde os Ø 250 mm até Ø 630 mm em versões termorregulável.

#### **Funcionamento**

O difusor de geometria variável de pás, permite a descarga de ar horizontal, inclinada e vertical mediante o movimento das pás. Esse movimento pode realizar-se manualmente, mediante um motor eléctrico ou ainda através de um elemento térmico que posiciona as pás em função da temperatura do ar insuflado.

#### **Aplicações**

A altura de instalação recomendada situa-se acima dos 3,5 m. Especialmente concebido para locais onde a insuflação deve realizar-se com ar frio, isotérmico ou calor.

A sua facilidade de montagem, de regulação, estética e a sua capacidade para deslocar grandes caudais de ar, fazem deste difusor uma escolha interessante para a climatização de espaços como fábricas, aeroportos, zonas de grande altura, etc.



#### **Dimensões**

O difusor DVP está disponível em nove tamanhos. Na página 4 são detalhadas tanto as dimensões gerais como o conjunto de difusor mais pleno.

Existem três modelos, movimento de pás manual, modelo DVP, movimento de pás autorregulável mediante elemento térmico, modelo DVP-TR e movimento mediante motor eléctrico, modelo DVP-M.

#### Acabamento

Tanto as pás como a parte exterior e o pleno do difusor são de chapa de aço galvanizada. O acabamento padrão é pintado em RAL 9010. Por encomenda podem ser pintados em qualquer cor RAL.



Com pleno com comporta reg. manual.Sem pleno.

Com comando manual

-M-CM24 M-LM24 M-CM24-SX M-LM24A-MF

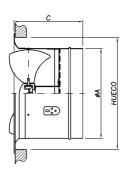
Actuador T/N 24V opcional 230V (de 160 a 400 mm) Actuador T/N 24V opcional 230V (de 500 a 800 mm) Proporcional (0-10V) 24V (de 160 a 315 mm)

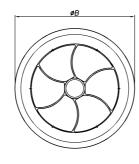
Proporcional (0-10V) 24V (de 100 a 313 mm)

Auto-regulável termicamente

Tamanho De 160 a 800 s/quadro.

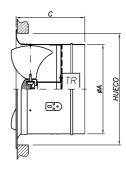
#### Identificação

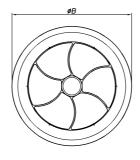

O código junto permite identificar os diferentes tamanhos e versões dos difusores DVP.


Os modelos termorregulável são a partir de Ø 250 mm. O acesso ao servomotor é feito através da conduta. Os plenos integram patilhas de suspensão. A pedido, os plenos podem ser fornecidos com isolamento interior.



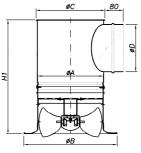
### **Dimensões**


- Os difusores tipo "DVP", de geometria variável, foram concebidos para cumprir com as necessidades de climatização dos locais que, dependendo das cargas térmicas das diferentes estações do ano, necessitam de ar frio, isotérmico ou quente. Mediante a variação das pás, muda-se a direcção do fluxo do ar, conseguindo um alcance horizontal ou vertical, assim como a graduação de posições intermédias.
- O difusor tipo "DVP" foi concebido pelo Departamento de Investigação e Desenvolvimento da KOOLAIR, S. L. e testado e calibrado no nosso Laboratório de Difusão e Acústica, dotado dos mais avançados sistemas de controlo e medição. Na sua aplicação foram utilizadas as teorias mais avançadas sobre difusão do ar em locais, baseadas nas experiências e estudos realizados pelo laboratório da KOOLAIR em Espanha.
- Seguidamente, detalham-se as três execuções disponíveis do citado difusor, DVP (movimento manual das pás), DVP-M (movimento motorizado das pás) e DVP-TR (movimento das pás mediante a acção de um elemento térmico).






| DIFUSOR | HUECO | ØΑ  | ØВ  | С   |
|---------|-------|-----|-----|-----|
| 160     | 215   | 159 | 253 | 155 |
| 200     | 255   | 199 | 303 | 174 |
| 250     | 305   | 249 | 353 | 200 |
| 315     | 370   | 314 | 418 | 240 |
| 355     | 410   | 354 | 458 | 250 |
| 400     | 455   | 399 | 503 | 265 |
| 500     | 555   | 499 | 600 | 320 |
| 630     | 685   | 629 | 730 | 380 |
| 800     | 855   | 799 | 900 | 555 |


DVP





| DIFUSOR | HUECO | ØΑ  | ØВ  | С   |
|---------|-------|-----|-----|-----|
| 250     | 305   | 249 | 353 | 200 |
| 315     | 370   | 314 | 418 | 240 |
| 355     | 410   | 354 | 458 | 250 |
| 400     | 455   | 399 | 503 | 265 |
| 500     | 555   | 499 | 600 | 320 |
| 630     | 685   | 629 | 730 | 380 |

**DVP-TR** 



DVP-PCFL-RE DVP-PCFS-RE

| DIFUSOR | ØΑ  | ØВ  | øс  | ØD  |      | H2  |
|---------|-----|-----|-----|-----|------|-----|
| 160     | 159 | 253 | 163 | 159 | 364  | 285 |
| 200     | 199 | 303 | 203 | 199 | 423  | 325 |
| 250     | 249 | 353 | 253 | 249 | 499  | 375 |
| 315     | 314 | 418 | 318 | 314 | 604  | 450 |
| 355     | 354 | 458 | 358 | 354 | 654  | 475 |
| 400     | 399 | 503 | 403 | 399 | 714  | 515 |
| 500     | 499 | 600 | 503 | 449 | 819  | 595 |
| 630     | 629 | 730 | 633 | 549 | 979  | 705 |
| 800     | 799 | 900 | 803 | 649 | 1254 | 930 |



# Quadros de selecção de descarga horizontal

Disposição das alhetas para descarga de ar horizontal a 30º.

|       | Q      |                 |     |     |     |      |     |     |     |     |     |
|-------|--------|-----------------|-----|-----|-----|------|-----|-----|-----|-----|-----|
| m³/h  | l/s    | Tamanho         | 160 | 200 | 250 | 3 15 | 355 | 400 | 500 | 630 | 800 |
| ,     | ., 0   | V <sub>c</sub>  | 2,1 | 1,3 | 0,9 |      |     | l   | l   |     |     |
| 150   | 41,7   | x               | 1,2 | 1,0 | 1,0 |      |     |     |     |     |     |
|       | ,      | $\Delta P_t$    | 32  | 13  | 5   |      |     |     |     |     |     |
|       |        | L <sub>WA</sub> | 31  | 19  | <15 |      |     |     |     |     |     |
|       |        | V <sub>c</sub>  | 2,8 | 1,8 | 1,1 | 0,7  |     |     |     |     |     |
| 200   | 55,6   | x               | 1,6 | 1,4 | 1,3 | 1,0  |     |     |     |     |     |
|       |        | $\Delta P_t$    | 58  | 23  | 9   | 4    |     |     |     |     |     |
|       |        | L <sub>WA</sub> | 39  | 27  | 16  | <15  |     |     |     |     |     |
|       |        | V <sub>c</sub>  | 3,5 | 2,2 | 1,4 | 0,9  | 0,7 | 0,6 |     |     |     |
| 250   | 69,4   | x               | 2,1 | 1,7 | 1,6 | 1,3  | 1,2 | 1,2 |     |     |     |
|       |        | $\Delta P_t$    | 90  | 36  | 14  | 6    | 4   | 3   |     |     |     |
|       |        | L <sub>WA</sub> | 46  | 34  | 22  | <15  | <15 | <15 |     |     |     |
|       |        | V <sub>c</sub>  | 4,2 | 2,7 | 1,7 | 1,1  | 0,8 | 0,7 |     |     |     |
| 300   | 83,3   | x               | 2,5 | 2,1 | 1,9 | 1,5  | 1,4 | 1,4 |     |     |     |
|       |        | $\Delta P_t$    | 130 | 51  | 20  | 9    | 6   | 4   |     |     |     |
|       |        | L <sub>WA</sub> | 51  | 39  | 28  | <15  | <15 | <15 |     |     |     |
|       |        | V <sub>c</sub>  |     | 3,6 | 2,3 | 1,4  | 1,1 | 0,9 | 0,6 |     |     |
| 400   | 111,1  | X               |     | 2,8 | 2,5 | 2,0  | 1,9 | 1,9 | 1,5 |     |     |
|       |        | $\Delta P_t$    |     | 91  | 36  | 16   | 10  | 7   | 3   |     |     |
|       |        | L <sub>WA</sub> |     | 48  | 36  | 19   | 15  | <15 | <15 |     |     |
|       |        | V <sub>c</sub>  |     | 4,5 | 2,9 | 1,8  | 1,4 | 1,1 | 0,7 |     |     |
| 500   | 138,9  | X               |     | 3,4 | 3,2 | 2,5  | 2,3 | 2,3 | 1,8 |     |     |
|       |        | $\Delta P_t$    |     | 143 | 56  | 25   | 16  | 11  | 4   |     |     |
|       |        | L <sub>WA</sub> |     | 54  | 43  | 26   | 22  | 19  | <15 |     |     |
|       |        | V <sub>c</sub>  |     |     | 4,3 | 2,7  | 2,1 | 1,7 | 1,1 | 0,7 |     |
| 750   | 208,3  | X               |     |     | 4,8 | 3,8  | 3,5 | 3,5 | 2,8 | 1,9 |     |
|       |        | $\Delta P_t$    |     |     | 127 | 56   | 36  | 24  | 9   | 4   |     |
|       |        | L <sub>WA</sub> |     |     | 55  | 39   | 35  | 31  | 20  | <15 |     |
|       |        | V <sub>c</sub>  |     |     |     | 3,6  | 2,8 | 2,2 | 1,4 | 0,9 | 0,6 |
| 1.000 | 277,8  | Х               |     |     |     | 5,0  | 4,7 | 4,6 | 3,7 | 2,6 | 1,9 |
|       |        | $\Delta P_t$    |     |     |     | 99   | 65  | 42  | 16  | 6   | 3   |
|       |        | L <sub>WA</sub> |     |     |     | 48   | 44  | 40  | 29  | 18  | <15 |
|       |        | V <sub>c</sub>  |     |     | •   |      | 4,2 | 3,3 | 2,1 | 1,3 | 0,8 |
| 1.500 | 416,7  | Х               |     |     |     |      | 7,0 | 6,9 | 5,5 | 3,9 | 2,8 |
|       |        | $\Delta P_t$    |     |     |     |      | 146 | 95  | 36  | 15  | 6   |
|       |        | L <sub>WA</sub> |     |     |     |      | 57  | 53  | 42  | 31  | 22  |
|       |        | V <sub>c</sub>  |     |     |     |      |     |     | 2,8 | 1,8 | 1,1 |
| 2.000 | 555,6  | X               |     |     |     |      |     |     | 7,4 | 5,2 | 3,8 |
|       |        | $\Delta P_t$    |     |     |     |      |     |     | 65  | 26  | 11  |
|       |        | L <sub>WA</sub> |     |     |     |      |     |     | 51  | 40  | 31  |
|       |        | V <sub>c</sub>  |     |     |     |      |     |     |     | 2,7 | 1,7 |
| 3.000 | 833,3  | Х               |     |     |     |      |     |     |     | 7,8 | 5,6 |
|       |        | $\Delta P_t$    |     |     |     |      |     |     |     | 58  | 25  |
|       |        | L <sub>WA</sub> |     |     |     |      |     |     |     | 53  | 43  |
|       |        | V <sub>c</sub>  |     |     |     |      |     |     | •   |     | 2,2 |
| 4.000 | 1111,1 | Х               |     |     |     |      |     |     |     |     | 7,5 |
|       |        | $\Delta P_t$    |     |     |     |      |     |     |     |     | 44  |
|       |        | L <sub>WA</sub> |     |     |     |      |     |     |     |     | 52  |
|       |        |                 |     |     |     |      |     |     |     |     |     |

#### **SIMBOLOGIA**

-Q (m³/h): Caudal de ar.

-V<sub>c</sub> (m/s): Velocidade no pescoço do difusor.

-X (m): Alcance para velocidade terminal do jacto de ar de 0,25 m/s.

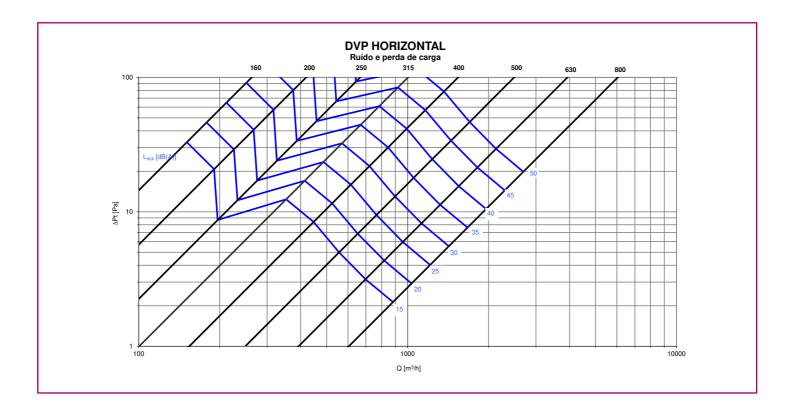
-ΔPt (Pa): Perda de carga.

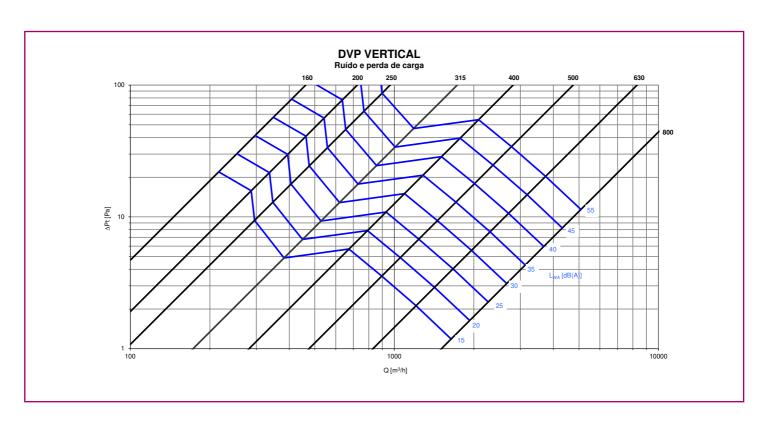
-L<sub>wA</sub> [dB(A)]: Nível de potência sonora.



# Quadros de selecção de descarga vertical

Disposição das alhetas para descarga de ar horizontal a 90º.


|        | -1                                      |                                                         |            | 1          |            | 1          |            |            | 1          | 1           |            |
|--------|-----------------------------------------|---------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|
| m³/h   | l/s                                     | Tamanho                                                 | 160        | 200        | 250        | 3 15       | 355        | 400        | 500        | 630         | 800        |
| 111711 | 1/5                                     | $v_t = 0,3$                                             | 1,5        |            | ı          |            | ı          |            | I          |             |            |
|        |                                         | $V_t = 0,5$                                             | 0,9        |            |            |            |            |            |            |             |            |
| 100    | 27,8                                    | $v_t = 1,0$ $\Delta P_t$                                | 0,5<br>5   |            |            |            |            |            |            |             |            |
|        |                                         | L <sub>wa</sub>                                         | <15        |            |            |            |            |            |            |             |            |
|        |                                         | $v_t = 0,3$<br>$v_t = 0,5$                              | 3,0<br>1,8 | 2,4<br>1,4 |            |            |            |            |            |             |            |
| 200    | 55,6                                    | $v_t = 0.3$ $v_t = 1.0$                                 | 0,9        | 0,7        | i          |            |            |            |            |             |            |
|        |                                         | ΔP,                                                     | 19         | 8          | ]          |            |            |            |            |             |            |
|        |                                         | L <sub>WA</sub>   V <sub>t</sub> = 0,3                  | 33<br>4,5  | 3,5        | 2,5        | 1,6        | 1,4        | Ī          |            |             |            |
|        |                                         | $V_t = 0,5$                                             | 2,7        | 2,1        | 1,5        | 1,0        | 0,9        |            |            |             |            |
| 300    | 83,3                                    | $v_t = 1,0$ $\Delta P_t$                                | 1,4<br>42  | 1,1<br>17  | 0,8        | 0,5<br>3   | 0,4<br>2   |            |            |             |            |
|        |                                         | L <sub>wa</sub>                                         | 45         | 31         | 15         | <15        | <15        |            |            |             |            |
|        |                                         | $v_t = 0,3$<br>$v_t = 0,5$                              | 6,0<br>3,6 | 4,7<br>2,8 | 3,4<br>2,0 | 2,1<br>1,3 | 1,9<br>1,1 |            |            |             |            |
| 400    | 111,1                                   | $v_t = 0,0$ $v_t = 1,0$                                 | 1,8        | 1,4        | 1,0        | 0,6        | 0,6        |            |            |             |            |
|        |                                         | $\Delta P_t$                                            | 75         | 31         | 17         | 5          | 3          |            |            |             |            |
|        |                                         | $V_t = 0.3$                                             | 54         | 40<br>5,9  | 25<br>4,2  | <15<br>2,7 | <15<br>2,4 | 1,6        | 1,2        | Ì           |            |
|        | 40.0 0                                  | $V_{t} = 0,5$                                           |            | 3,5        | 2,5        | 1,6        | 1,4        | 1,0        | 0,7        |             |            |
| 500    | 138,9                                   | $v_t = 1,0$ $\Delta P_t$                                |            | 1,8<br>48  | 1,3<br>27  | 0,8<br>8   | 0,7<br>5   | 0,5<br>3   | 0,3        |             |            |
|        |                                         | L <sub>WA</sub>                                         |            | 47         | 32         | 16         | <15        | <15        | <15        |             |            |
|        |                                         | $v_t = 0,3$                                             | · '        |            | 5,0        | 3,2        | 2,8        | 2,0        | 1,4        |             |            |
| 600    | 166,7                                   | $V_t = 0,5$<br>$V_t = 1,0$                              |            |            | 3,0<br>1,5 | 1,9<br>1,0 | 1,7<br>0,9 | 1,2<br>0,6 | 0,8<br>0,4 |             |            |
|        |                                         | $\Delta P_{t}$                                          |            |            | 39         | 12         | 7          | 5          | 2          |             |            |
|        |                                         | L <sub>WA</sub> v <sub>t</sub> = 0,3                    |            |            | 37<br>6,7  | 22<br>4,3  | 17<br>3,8  | <15<br>2,6 | <15<br>1,8 | 1,3         |            |
|        |                                         | $V_t = 0,5$                                             |            |            | 4,0        | 2,6        | 2,3        | 1,6        | 1,1        | 0,8         |            |
| 800    | 222,2                                   | V <sub>t</sub> = 1,0                                    |            |            | 2,0<br>69  | 1,3<br>21  | 1,1<br>13  | 0,8<br>8   | 0,6<br>3   | 0,4         |            |
|        |                                         | ΔP <sub>t</sub><br>L <sub>WA</sub>                      |            |            | 46         | 31         | 26         | 20         | <15        | <15         |            |
|        |                                         | V, = 0,3                                                |            |            | 8,4        | 5,3        | 4,7        | 3,3        | 2,3        | 1,7         |            |
| 1.000  | 277,8                                   | $V_t = 0,5$<br>$V_t = 1,0$                              |            |            | 5,0<br>2,5 | 3,2<br>1,6 | 2,8<br>1,4 | 2,0<br>1,0 | 1,4<br>0,7 | 1,0<br>0,5  |            |
|        | -,-                                     | $\Delta P_{t}$                                          |            |            | 108        | 33         | 21         | 13         | 4          | 1           |            |
|        |                                         | L <sub>WA</sub> v <sub>t</sub> = 0,3                    |            |            | 53         | 38<br>10,6 | 33<br>9,4  | 27<br>6,5  | <15<br>4,6 | <15<br>3,3  | 2,4        |
|        |                                         | $X V_t = 0.5$                                           |            |            |            | 6,4        | 5,7        | 3,9        | 2,8        | 2,0         | 1,4        |
| 2.000  | 555,6                                   | $V_{t} = 1,0$                                           |            |            |            | 3,2<br>134 | 2,8<br>83  | 2,0<br>50  | 1,4<br>18  | 1,0<br>6    | 0,7<br>2   |
|        |                                         | $\Delta P_t$ $L_{WA}$                                   |            |            |            | 59         | 54         | 49         | 35         | 21          | <15        |
|        |                                         | $v_{t} = 0,3$                                           |            |            | 1          |            |            | 9,8        | 6,9        | 5,0         | 3,5        |
| 3.000  | 833,3                                   | $v_t = 0,5$<br>$v_t = 1,0$                              |            |            |            |            |            | 5,9<br>2,9 | 4,1<br>2,1 | 3,0<br>1,5  | 2,1<br>1,1 |
|        | 110,0                                   | $\Delta P_t$                                            |            |            |            |            |            | 113        | 40         | 13          | 4          |
|        |                                         | $L_{WA}$ $v_t = 0.3$                                    |            |            |            |            |            | 61         | 47<br>9,2  | 33<br>6,6   | 19<br>4,7  |
|        |                                         | X v, = 0,5                                              |            |            |            |            |            |            | 5,5        | 4,0         | 2,8        |
| 4.000  | 1111,1                                  | v <sub>t</sub> = 1,0                                    |            |            |            |            |            |            | 2,8        | 2,0         | 1,4        |
|        |                                         | ΔP <sub>t</sub><br>L <sub>WA</sub>                      |            |            |            |            |            |            | 71<br>56   | 23<br>42    | 7<br>28    |
|        |                                         | $v_{t} = 0,3$                                           |            |            |            |            |            |            |            | 8,3         | 5,9        |
| 5.000  | 1388,9                                  | $V_t = 0,5$<br>$V_t = 1,0$                              |            |            |            |            |            |            |            | 5,0<br>2,5  | 3,5<br>1,8 |
| 3.000  | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | $\Delta P_{t}$                                          |            |            |            |            |            |            |            | 36          | 11         |
|        |                                         | L <sub>wa</sub>                                         |            |            |            |            |            |            |            | 49          | 34         |
|        |                                         | $v_t = 0,3$<br>$v_t = 0,5$                              |            |            |            |            |            |            |            | 10,0<br>6,0 | 7,1<br>4,2 |
| 6.000  | 1666,7                                  | v <sub>t</sub> = 1,0                                    |            |            |            |            |            |            |            | 3,0         | 2,1        |
|        |                                         | ΔP <sub>t</sub><br>L                                    |            |            |            |            |            |            |            | 52<br>55    | 16<br>40   |
|        |                                         | L <sub>WA</sub> v <sub>t</sub> = 0,3                    |            |            |            |            |            |            |            | 55          | 9,4        |
|        |                                         | X V <sub>t</sub> = 0,5                                  |            |            |            |            |            |            |            |             | 5,6        |
| 8.000  | 2222,2                                  | v <sub>t</sub> = 0,3                                    |            |            |            |            |            |            |            |             | 2,8        |
|        |                                         | ΔP <sub>t</sub>                                         |            |            |            |            |            |            |            |             | 28         |
|        |                                         | L <sub>WA</sub>                                         |            |            |            |            |            |            |            |             | 49         |
|        |                                         | v <sub>t</sub> = 0,3                                    |            |            |            |            |            |            |            |             | 11,8       |
|        |                                         | $\begin{array}{c c} v_t = 0,3 \\ v_t = 0,5 \end{array}$ |            |            |            |            |            |            |            |             | 7,1        |
| 10.000 | 2777,8                                  | $V_t = 0.5$ $V_t = 1.0$                                 |            |            |            |            |            |            |            |             | 3,5        |
| .5.555 |                                         | $\Delta P_t$                                            |            |            |            |            |            |            |            |             | 44         |
|        |                                         | L <sub>WA</sub>                                         |            |            |            |            |            |            |            |             | 56         |
|        | L                                       | -WA                                                     | L          |            |            |            |            |            |            |             | 96         |


#### **SIMBOLOGIA**

- -Q (m<sup>3</sup>/h): Caudal de ar.
- -V<sub>t</sub> (m/s): Velocidade terminal:
- -X (m): Alcance vertical para velocidade terminal do jacto de ar com um  $\Delta t = +10^{\circ}$ C.
- -ΔPt (Pa): Perda de carga.
- -L<sub>wA</sub> [dB(A)]: Nível de potência sonora.



# Gráficos de selecção de nível sonoro







#### ESTE CATÁLOGO É PROPRIEDADE INTELECTUAL.

Fica proibida a reprodução parcial ou total do seu conteúdo sem autorização expressa e formal da KOOLAIR, S.L.

# 

#### KOOLAIR, S.L.

Calle Urano, 26 Poligono industrial nº 2 – La Fuensanta 28936 Móstoles - Madrid - (España)

Tel: +34 91 645 00 33 Fax: +34 91 645 69 62 e-mail: info@koolair.com