

serie

FDS-3G

Rectangular fire dampers

www.koolair.com

Table of Contents

Overview	2
Technical Parameters	5
Diagrams	9
Dimensions & Weights	13
Ordering Code	16
Installation	18
Electrical Parameters	55
Operation Manual	63
FDS-3G-KS	65

Overview

Description

Fire dampers represent passive fire protection, designed with the help of compartmentalization to prevent the spread of toxic gases, smoke and fire. Standard fire dampers are designed and certified in accordance with EN 15650 and tested for EIS criteria according to EN 1366–2. Fire damper together with its installation form an inseparable part of fire resistivity rating. FDS-3G fire dampers are designed for the installations listed and described in their Handbook. By default, all fire dampers are supplied with a manual mechanism or actuator mechanism, optionally with a supply and communication unit. The activation mechanisms are removable and are interchangeable, for example an actuator operated mechanism instead of a manually operated mechanism.

Highlights

- Lightweight construction
- Casing tightness class C as standard. One inspection opening for all sizes greater than 200x200.
- Exceptionally low pressure drop
- Changeable mechanism
- Modulated actuator suitable for system balancing possibility to open the blade at the desired angle.
- Great variety of installations rated up EI 120S

Product Types

• FDS-3G

Rectangular fire damper with a maximum fire resistivity of 120 minutes and a single body design. Size range from 100x100 up to 1200x800 mm.

• FDS-3G- KS

Rectangular fire damper with square kit up to size 800 x 600 mm.

Overview

Activation Types

Manually Operated Fire Dampers

By default, all manually operated fire dampers are supplied with manual control, optionally with micro switches and electromagnets. In case of fire, the fire damper is closed automatically. Depending on the version, the damper closes either after the melting of the thermal fuse or by means of remote activation through an electromagnet in impulse connection. After the closing of the damper blade, it is mechanically locked in the closed position and can only be opened manually. The actuating mechanism is activated when the temperature of the air in the duct reaches 74°C and the damper closes within 10 seconds after the melting of the fuse.

• H0

Fire damper with an activation mechanism with a cover, manual crank and with a spring return release mechanism activated by a fusible thermal link set to 74°C (100°C under request).

• H2

Fire damper with an activation mechanism H0 + opening and closing indication with 2 start and end switches.

• H5-2

Fire damper with an activation mechanism H0 + a 24V AC/DC electromagnetic release mechanism in the impulse connection (release takes place when the electromagnet is activated) + opening and closing indication with 2 start and end switches.

· H6-2

Fire damper with an activation mechanism H0 + a 230V AC electromagnetic release mechanism in the impulse connection (release takes place when the electromagnet is activated) + opening and closing indication with 2 start and end switches.

Actuator- Operated Fire Dampers

By default, all actuator operated fire dampers are supplied with an actuator with micro switches, optionally with a power and communication unit. A fire damper can be equipped with a spring return actuator can be closed with command from the building management system, or after the breaching of the thermoelectric fuse. Actuator operated fire dampers are standardly equipped with a thermoelectric fuse, that activates the closing of the damper after the reaching or exceeding of the ambient temperature of 72°C. The actuator power circuit is interrupted and its spring closes the damper blade within 20 seconds. Belimo actuator available with on demand fuse 95 °C or 120 °C.

B230T (230V AC Belimo Actuator)

Fire damper with an activation mechanism with a Belimo spring return actuator (230V AC) with electrothermal fuse 72°C and auxiliary switches.

B24T (24V AC/DC Belimo Actuator)

Fire damper with an activation mechanism with a Belimo spring return actuator (24V AC/DC) with electrothermal fuse 72°C and auxiliary switches.

• B24T-W (24V AC/DC Belimo Actuator & Wire connector for comm.unit)

Fire damper with an activation mechanism with a Belimo spring return actuator (24V AC/DC) with an electrothermal fuse 72°C and auxiliary switches, with provided cable connectors for the supply and communication unit (communication unit not part of the mechanism).

Overview

Design

Fire dampers have casings made from galvanized sheet metal. Blades from non-asbestos insulants have a rubber seal for cold smoke and an intumescent seal, that expands in a fire situation.

Material Composition

The product contains galvanized sheet metal, calcium silicate board, fireproof carbon fiberglass, polyurethane foam and ethylene-propylene rubber. These are processed in accordance with local regulations. The product contains no hazardous substances, except for the solder in the thermofuse, which contains a milligram of lead.

Durability test

- 50 cycles/manually operated activation mechanism with no change of the required properties
- 10000 + 100 + 100 cycles/actuator operated activation mechanism with no change of the required properties

Fire testing pressure

Underpressure between 300 Pa and 500 Pa

Safety position

Closed. (In fire scenario the damper closes via spring in actuator or spring in manual mechanism)

Airflow direction

Both directions

Allowed air velocity

Damper can still operate at max. 12 m/s. Air without any mechanical or chemical contamination

Side with fire protection

Depending on installation classification: From both sides (i <-> o)

Repeated opening

Suitable for daily check procedure. It is not possible to operate the device after reaching Activation temperature.

Activation Temperature

- Manually operated: 74 °C as standard (100 °C on request) by means of a spring after the melting of the thermofuse.
- Actuator operated: 72 °C as standard (95 °C or 120 °C on request) by means of the spring after current interruption in the electro-thermal fuse.

Operational temperature

- Minimum: 0 °C
- Maximum: 60 °C for 74 °C and 72 °C thermofuse
- Maximum: 85 °C for 95 °C and 100 °C thermofuse
- Maximum 105 °C for 120 °C thermofuse

Environment suitability

Protected against weather disruptions, with temperature above 0 °C, up to 95% Rha, (3K5 according to EN 60721-3-3)

Open/Closed indication

- Manually operated microswitches Activation types H2 up to H6-2
- Actuator operated built-in microswitches Activation types B230T/B24T and B24T-W

Closing/Opening time

Manually operated < 10 s, actuator operated < 20 s

Inspection possibility

By opening of the inspection lid.

Maintenance

Not required. Dry cleaning if demanded by law in the country in which the dampers are installed.

Revisions

Determined by law in the country in which the fire dampers are installed but at least every 12 months.

Allowed pressure 1200 Pa Blade tightness (STN EN 1751)

Class 3 as standard for all nominal sizes.

Tightness of the housing (STN EN 1751)

Class C as standard

Conformity with EC directives

2006/42/EČ Machinery Directive 2014/35/EU Low Voltage Directive 2014/30/EU Electromagnetic Compatibility Directive

Driving actuator types

Belimo: BF230-T, BF24-T, BFN230-T, BFN24-T, BFL230-T, BFL24-T (also with connection possibilities with acronyms ST, W)

Transport and Storage

Dry indoor conditions with a temperature range of -20 °C to +50 °C

Product parts

FDS-3G

Legend

- P1 Blade
- P2 Casing
- P3 Manually operated activation mechanism (H0;H...)
- P4 Actuator operated activation mechanism (B...)
- P5 Inspection lid
- P6 Thermoelectric fuse (BAT72;TA-72)
- P8 Bendable hanger
- P9 Release and test button
- P10 Crank
- P11 Open position
- P12 Closed position
- P13 Hexagon bent wrench No.10 (not part of delivery)

Assessed Performance - FDS-3G

23 CE 1396

Safeair, S.L. (España)

Avda. San Isidro, nave C-3, 45223 Sesena - TOLEDO

1396-CPR-0231, FDS-3G

(valid for subgroups: KS...)

EN 15650: 2010

Rectangular fire dampers

Nominal activation conditions/sensitivity - Pass

- · sensing element load bearing capacity
- · sensing element response temperature

Response delay (response time) - Pass

· closure time

Operational reliability - Pass

- motorized cycle 10.200 cycles
- manual cycle 50 cycles

Fire resistance:

Resistivity depending on installation method and situation

- integrity E
- maintenance of the cross section (under E)
- mechanical stability (under E)
- cross section (under E)
- · insulation I
- smoke leakage S

Durability of response delay - Pass

• sensing element response temperature and load bearing capacity

Durability of operational reliability - Pass

· open and closing cycle

The pressure drop and A-weighted total discharged sound power level depend on the nominal width and height of the damper and air flow volume at different duct pressures. The type of activation does not influences the airflow parameter, therefore only one activation type is shown in the diagrams.

FDS-3G-...
Pressure drop & A-weighted sound power level in db(A)

FDS-3G-...
Pressure drop & A-weighted sound power level in db(A)

FDS-3G-...
Pressure drop & A-weighted sound power level in db(A)

FDS-3G-...
Pressure drop & A-weighted sound power level in db(A)

FDS-3G-...

Pressure drop & A-weighted sound power level in db(A)

FDS-3G-...

Pressure drop & A-weighted sound power level in db(A)

FDS-3G-...

Pressure drop & A-weighted sound power level in db(A)

FDS-3G-...

Pressure drop & A-weighted sound power level in db(A)

Free area

Λ	(m²)	Y.	X	900 CC		ev e		rev - 122		V27 - 1	W (m	ım)		en en		n 00	, 7	20 /20		//]
Α,	(m²)	100	150	200	250	300	315	350	355	400	450	500	550	560	600	630	650	700	710	750	800
	100	0,007	0,010	0,014	0,018	0,022	0,023	0,026	0,026	0,030	0,030	0,034	0,037	0,038	0,041	0,043	0,044	0,048	0,049	0,051	0,055
	150	0,011	0,015	0,021	0,027	0,033	0,034	0,038	0,039	0,044	0,047	0,052	0,058	0,059	0,063	0,066	0,068	0,074	0,075	0,079	0,085
	175	0,013	0,019	0,026	0,033	0,040	0,042	0,047	0,048	0,054	0,058	0,064	0,071	0,072	0,078	0,082	0,084	0,091	0,092	0,098	0,104
	180	0,014	0,019	0,027	0,034	0,041	0,043	0,048	0,049	0,056	0,060	0,067	0,074	0,075	0,081	0,085	0,087	0,094	0,096	0,101	0,108
	200	0,016	0,022	0,030	0,039	0,047	0,049	0,055	0,056	0,063	0,067	0,074	0,082	0,084	0,090	0,095	0,098	0,105	0,107	0,113	0,121
	250	- 10	0,029	0,040	0,050	0,061	0,064	0,072	0,073	0,083	0,088	0,099	0,109	0,111	0,119	0,125	0,129	0,140	0,142	0,150	0,160
	300	-	0,036	0,049	0,062	0,075	0,079	0,089	0,090	0,102	0,110	0,123	0,135	0,138	0,148	0,156	0,161	0,174	0,176	0,186	0,199
	315	-	5.	0,052	0,066	0,080	0,084	0,094	0,095	0,108	0,116	0,130	0,143	0,146	0,157	0,165	0,170	0,184	0,187	0,197	0,211
	350	-	-	0,058	0,074	0,090	0,094	0,105	0,107	0,121	0,132	0,147	0,162	0,165	0,177	0,186	0,193	0,208	0,211	0,223	0,238
Œ	355	-	2	0,059	0,075	0,091	0,096	0,107	0,109	0,123	0,134	0,149	0,165	0,168	0,180	0,190	0,196	0,211	0,214	0,227	0,242
H (mm)	400	-	0.	17.7	0,086	0,104	0,109	0,122	0,124	0,140	0,153	0,171	0,189	0,192	0,206	0,217	0,224	0,242	0,245	0,260	0,277
Ι.	450	-	-	-	0,094	0,114	0,120	0,134	0,136	0,154	0,175	0,195	0,215	0,219	0,235	0,248	0,256	0,276	0,280	0,296	0,316
	500		5.	10.700	0,105	0,128	0,135	0,151	0,153	0,174	0,196	0,219	0,242	0,246	0,265	0,278	0,287	0,310	0,315	0,333	0,356
	550	-		0-0	-	0,142	0,15	0,167	0,170	0,193	0,218	0,243	0,268	0,273	0,294	0,309	0,319	0,344	0,349	0,369	0,395
	560	-	2	-	-	0,145	0,153	0,171	0,173	0,197	0,222	0,248	0,274	0,279	0,300	0,315	0,325	0,351	0,356	0,377	0,403
	600	- 100		(- ()	-	0,156	0,165	0,184	0,187	0,212	0,240	0,267	0,295	0,301	0,323	0,339	0,351	0,378	0,384	0,406	0,434
	630			10-11	2	(V=0)	0,151	0,171	0,174	0,199	0,227	0,255	0,283	0,288	0,311	0,328	0,339	0,367	0,372	0,395	0,423
	650	177	5.	979	[5]	-	7	0,177	0,180	0,206	0,235	0,264	0,293	0,299	0,322	0,339	0,351	0,380	0,386	0,409	0,438
	700	-	-	N - N	-	2 - 2	-	0,192	0,195	0,224	0,255	0,287	0,318	0,324	0,350	0,369	0,381	0,413	0,419	0,444	0,476
	710		2	-	2	-	2	-	2	0,227	0,259	0,291	0,323	0,330	0,355	0,374	0,387	0,419	0,426	0,451	0,483
	750	-	0	17-11	-	3.59	151.	y-1	-	0,241	0,275	0,309	0,343	0,350	0,377	0,398	0,411	0,445	0,452	0,479	0,513
	800		-		-	9-9	-	8-3	7-	-	0,296	0,332	0,369	0,376	0,405	0,427	0,442	0,478	0,485	0,515	0,551

FDS-3G (L = 325 mm)

•	(2)				W (mm)				
A	_v (m²)	850	900	950	1000	1050	1100	1120	1150	1200
	100	-	-	-			1.5	-	7.0	-
	150	-	1 20	-	12	- 2	-	2	20	2002
	175	-	-	7-1	-			-	20	-
	180	-	-	-	-	-	-	-	-	-
	200	0,105	0,111	0,118	0,124	0,131	0,137	0,140	0,144	0,150
	250	0,145	0,154	0,163	0,172	0,181	0,190	0,194	0,199	0,208
	300	0,185	0,197	0,208	0,220	0,231	0,243	0,247	0,254	0,266
	315	0,197	0,209	0,222	0,234	0,246	0,258	0,263	0,271	0,283
	350	0,225	0,239	0,253	0,267	0,281	0,295	0,301	0,309	0,323
	355	0,229	0,244	0,258	0,272	0,286	0,301	0,306	0,315	0,329
	400	0,266	0,282	0,299	0,315	0,332	0,348	0,355	0,365	0,381
(mm)	450	0,306	0,325	0,344	0,363	0,382	0,401	0,409	0,420	0,439
Ī	500	0,346	0,368	0,389	0,411	0,432	0,454	0,462	0,475	0,497
s:433	550	0,386	0,410	0,434	0,458	0,482	0,506	0,516	0,530	0,554
	560	0,394	0,419	0,443	0,468	0,492	0,517	0,527	0,541	0,566
	600	0,427	0,453	0,480	0,506	0,533	0,559	0,570	0,586	0,612
	630	0,451	0,479	0,507	0,535	0,563	0,591	0,602	0,619	0,647
	650	0,467	0,496	0,525	0,554	0,583	0,612	0,624	0,641	0,670
	700	0,507	0,539	0,570	0,602	0,633	0,665	0,677	0,696	0,728
	710	0,515	0,547	0,579	0,611	0,643	0,675	0,688	0,707	0,739
	750	0,547	0,581	0,615	0,649	0,683	0,717	0,731	0,751	0,785
	800	0,588	0,624	0,661	0,697	0,734	0,770	0,785	0,807	0,843

Dimensions & Weights

Dimensions

To avoid blocking the movement of a damper blade, connect a straight duct at minimal lengths respectively R1 or R2. R1 and R2 are the overhang of the fully open blade, including seals and gaskets on the damper blade.

NOTES

* For nominal size W = 100 mm the internal width dimension is 100 mm, flange outside width dimension 152 mm and/or for nominal size H = 100 mm the internal height dimension is 100 mm, flange outside height dimension 152 mm

FDS-3G, 100 x 100 up to 1200 x 800

		H (mm)																				
	100	150	175	180	200	250	300	315	350	355	400	450	500	550	560	600	630	650	700	710	750	800
R ₁ (mm)	-188	-163	-150	-148	-143	-118	-93	-85	-68	-65	-43	-18	7	32	37	57	72	82	107	112	132	157
R ₂ (mm)	-43	-18	-5	-3	2	27	52	60	77	80	102	127	152	177	182	202	217	227	252	257	277	302

Dimensions & Weights

Weights

HO,	, H										1) W	nm)									
130	±10%)	100	150	200	250	300	315	350	355	400	450	500	550	560	600	630	650	700	710	750	800
	100	4,2	4,6	5,1	5,5	6,0	6,1	6,4	6,5	6,9	7,4	7,8	8,3	8,4	8,8	9,0	9,2	9,7	9,8	10,1	10,6
	150	4,6	5,1	5,6	6,2	6,7	6,8	7,2	7,3	7,7	8,3	8,8	9,3	9,4	9,9	10,2	10,4	10,9	11,0	11,4	11,9
	200	5,1	5,7	6,2	6,8	7,4	7,6	8,0	8,1	8,6	9,2	9,8	10,4	10,5	11,0	11,3	11,6	12,2	12,3	12,7	13,3
	250	-	6,2	6,8	7,5	8,1	8,3	8,8	8,9	9,4	10,2	10,8	11,5	11,6	12,1	12,5	12,8	13,4	13,5	14,1	14,7
	300	-	6,7	7,4	8,1	8,8	9,1	9,6	9,7	10,3	11,1	11,8	12,5	12,6	13,2	13,6	13,9	14,6	14,8	15,4	16,1
	315	-	7-	7,6	8,3	9,1	9,3	9,8	9,9	10,5	11,3	12,1	12,8	13,0	13,5	14,0	14,3	15,0	15,2	15,8	16,5
	350	-		8,0	8,8	9,6	9,8	10,3	10,4	11,1	12,0	12,8	13,5	13,7	14,3	14,8	15,1	15,9	16,0	16,7	17,5
	355	-	-	8,1	8,9	9,7	9,9	10,4	10,5	11,2	12,1	12,9	13,6	13,8	14,4	14,9	15,2	16,0	16,2	16,8	17,6
	400	-	-	8,6	9,4	10,3	10,5	11,1	11,2	12,0	12,9	13,7	14,6	14,8	15,4	15,9	16,3	17,1	17,3	18,0	18,8
	450	-	-	-	10,1	11,0	11,3	11,9	12,0	12,8	13,8	14,7	15,6	15,8	16,5	17,1	17,5	18,4	18,6	19,3	20,2
	500	-	-	-	10,7	11,7	12,0	12,7	12,8	13,7	14,7	15,7	16,7	16,9	17,7	18,2	18,6	19,6	19,8	20,6	21,6
H (mm)	550	-	2-2	-	-	12,4	12,7	13,5	13,6	14,5	15,6	16,7	17,7	17,9	18,8	19,4	19,8	20,9	21,1	21,9	22,9
포	560	-	7-1	-	-	12,6	12,9	13,6	13,7	14,7	15,8	16,7	17,9	18,1	19,0	19,6	20,0	21,1	21,3	22,2	23,2
	600	-	2-2	-	-	13,1	13,5	14,2	14,4	15,4	16,5	17,7	18,8	19,0	19,9	20,5	21,0	22,1	22,3	23,2	24,3
	630	-	7-1	-	-	-	-	18,4	18,5	19,9	21,5	23,0	24,6	24,9	26,1	27,1	27,7	29,2	29,6	30,8	32,4
	650	-	-	-	-	-	-	18,8	19,0	20,4	22,0	23,6	25,2	25,5	26,8	27,7	28,3	29,9	30,3	31,5	33,1
	700	-	-	-	-	-	-	19,9	20,0	21,6	23,2	24,9	26,6	26,9	28,3	29,3	30,0	31,7	32,0	33,3	35,0
	710	-	-	-	-	-	-	-	20,3	21,8	23,5	25,2	26,9	27,2	28,6	29,6	30,3	32,0	32,3	33,7	35,4
	750	-	-	-	-	-	-	-	-	22,7	24,5	26,3	28,1	28,4	29,8	30,9	31,6	33,4	33,7	35,2	36,9
	800	-	V-1	-	-	-	-	-	-	23,9	25,8	27,6	29,5	29,9	31,4	32,5	33,2	35,1	35,5	37,0	38,9

	В
FDS-3G (L = 325 mm)	+ 1,6

Dimensions & Weights

Weights

HO m	, H				W (mm)				
(kg	±10%)	850	900	950	1000	1050	1100	1120	1150	1200
	100	-	-	-	-	-	7 - 8	-/	-	-
	150	-	-	-		-	-	-	-	-
	200	21,2	22,8	24,5	26,1	28,0	29,8	31,7	33,5	34,8
	250	24,0	25,1	26,2	27,3	29,2	31,1	33,0	34,9	35,6
	300	26,5	27,7	29,0	30,2	31,5	32,7	34,0	35,2	36,1
	315	21,2	22,2	23,1	24,1	25,6	26,6	27,0	27,6	28,5
	350	22,6	23,6	24,7	25,7	27,3	28,3	28,7	29,3	30,4
	355	22,8	23,9	24,9	25,9	27,5	28,6	29,0	29,6	30,6
	400	24,6	25,7	26,9	28,0	29,7	30,8	31,2	31,9	33,0
	450	26,6	27,8	29,1	30,3	32,1	33,3	33,8	34,5	35,7
	500	28,6	29,9	31,3	32,6	34,4	35,7	36,3	37,1	38,4
E.	550	30,6	32,0	33,4	34,8	36,8	38,2	38,8	39,6	41,0
H (mm	560	31,0	32,5	33,9	35,3	37,3	38,7	39,3	40,1	41,6
	600	32,6	34,1	35,6	37,1	39,2	40,7	41,3	42,2	43,7
	630	33,9	35,5	37,0	38,6	40,7	42,2	42,8	43,8	45,3
	650	34,7	36,3	37,9	39,5	41,6	43,2	43,9	44,8	46,4
	700	36,7	38,4	40,1	41,8	44,0	45,7	46,4	47,4	49,1
	710	37,1	38,8	40,5	42,2	44,5	46,2	46,9	47,9	49,6
	750	38,7	40,5	42,3	44,0	46,4	48,2	48,9	49,9	51,7
	800	40,7	42,6	44,5	46,3	48,8	50,6	51,4	52,5	54,4

	В
FDS-3G (L = 325 mm)	+ 1,6

Ordering Code

A-Damper type

3G

W - Width Dimension

from 100 mm up to 1200 mm (FDS-3G)

H - Height Dimension

from 100 mm up to 800 mm (FDS-3G)

B - Type of Activation (H0 up to B24T-W)

H0 - Manual crank, no switches

H2 - Manual crank, 2 switches 230V AC or 24V AC/DC

H5-2 - Manual crank, 24V AC/DC electromagnet, 2 switches 230V AC or 24V AC/DC

H6-2 - Manual crank, 230V AC electromagnet, 2 switches 230V AC or 24V AC/DC

B230T - 230V AC Belimo Actuator

B24T - 24V AC/DC Belimo Actuator

B24T-W - 24V AC/DC Belimo Actuator & Wire connector for comm.unit

Ordering Code

Example of the Rectangular Fire Dampers Ordering Code

FDS-3G

FDS-3G-1200x800-H5-2 Rectangular fire damper, nominal dimensions width × height = 1200 × 800 mm, with open and closed position indication with 230 V contact microswitches. Note: The fire resistivity depends on the installation method.

W - Width Dimension Inspection opening possitions

Removable mechanism is available for all sizes.

W and H < 200

No inspection openning. Inspection possible through removable mechanism or additional inspection opening must be added to the conecting duct.

W and H ≥ 200

Standardardly in position: BR

1 Wet	FDS-3G 100 x 100 1200 x 800 (Subpressure: 300 Pa)	E160 ($V_a h_0 i \leftrightarrow o$) S E190 ($V_a h_0 i \leftrightarrow o$) S		Old	c)	360°
	(casp. coolie. coo . a)	El 120 (v₀h₀l ↔ o) S				
		El 60 (V₀ h₀ i ↔ o) S	al.	ыв	a)	
1 Wet	FDS-3G 100 x 100 1200 x 800	El 90 (v₀ h₀ i ↔ o) S		0	°	360°
	(Subpressure: 500 Pa)	⊟120 (V _e h _o l ↔ o) S				□ / □ /
	FDS-3G 100 x 100	El 60 (v _e h _o i ↔ o) S	a) []	ь) []	c)	(<u>î</u>
2 Dry	1200 x 800 (Subpressure: 300 Pa)	El 90 ($v_e h_o i \leftrightarrow o$) S	~]	-7		360°
		El 60 (v _e i ↔ o) S	a) [Pa	(d		
	FDS-3G 100 x 100	El 90 (v_e i \leftrightarrow o) S		~ 1	而	
3 Soft	1200 x 800 (Subpressure: 300 Pa)	El 60 (h₀ i ↔ o) S			360°	
		El 90 (h _o i ↔ o) S	c) <	>		
		El 120 (h _o i ↔ o) S				
3H Hilti	FDS-3G 100 x 100 1200 x 800 (Subpressure: 300 Pa)	El 60 ($v_e - i \leftrightarrow o$) S	a) (F)	b) []	360°	
000	FDS-3G 100 x 100	El 60 (v _a - i ↔ o) S	a) P	b) []	₽₩	
5.1 On, Out	1200 x 800 (Subpressure: 300 Pa)	EI 90 ($v_e - i \leftrightarrow o$) S		3	₽ ₩	
5.2 On, Out	FDS-3G 100 x 100 1200 x 800 (Subpressure: 300 Pa)	EI 60 (v _e - i ↔ o) S		b) []		
000	FDS-3G 100 x 100 1200 x 800	El 60 ($v_e - i \leftrightarrow o$) S	a)	b) [[]	D	
5.3 On, Out	(Subpressure: 300 Pa)	El 90 ($v_e - i \leftrightarrow o$) S	-7	-7	₩	
7777 5.4 On, Out	FDS-3G 100 x 100 1200 x 800 (Subpressure: 300 Pa)	EI 60 (v _e - i ↔ o) S	a) [F]	b) [[]		

Legend:

- 1. Wet Wet installation, using Plaster/Mortar/Concrete Filling
- 2. Dry Dry installation, using cover boards and mineral wool filing
- 3. Soft Soft installation, using mineral wool filing
- 3H. Hilti Filling made only from Hilti foam
- 5.1. On & Out ON & OUT of the wall installation rated for EI90S, Using 2 layers of Mineral Wool
- 5.2. On & Out ON & OUT of the wall installation rated for El60S, Using 1 layer of Mineral Wool
- 5.3. On & Out ON & OUT of the wall installation rated for EI90S, Using Promatect boards
- 5.4. On & Out ON & OUT of the wall installation rated for EI60S, Using Promatect boards

- a) Flexible (plasterboard) wall
- b) Concrete/masonry/cellular concrete (rigid) wall
- c) Concrete/cellular concrete (rigid) floor/ceiling
- Ve Vertical wall
- ho Horizontal floor/ceiling

Installation rules

- The duct connected to the fire damper must be supported or hung in such a way that the damper does not carry its weight. The damper must not support any part of the surrounding construction or wall which could cause damage and consequent damper failure. It is recommended to connect the damper to a dilatation compensator on either end of the damper.
- The damper driving mechanism can be placed on either side of the wall, however, it needs to be placed so as to ensure easy access during inspection.
- According to the standard EN 1366-2, the distance between the fire damper bodies must be at least 200 mm. This condition does not apply for tested distances. Therefore Wet and Soft installations are approved for smaller distances under condition that the resulted resistivity is reduced to El90S.
- The distance between the wall/ceiling and the fire damper must be at least 75 mm. This condition does not apply for tested distances. Therefore Wet and Soft installations are approved for smaller distances under condition that the resulted resistivity is reduced to El90S.
- The fire damper must be installed into a fire partition structure in such a way that the damper blade in its closed position is located inside this structure. A bendable hinge is provided on the damper body which represents a plane where supporting construction begins. This condition does not apply for installations On & Out.
- For each resistivity the minimum thickness of its supporting construction cannot be decreased as per EN 1366-2 at least 200 mm from the installation opening.
- The gap in the installation opening between the fire damper and the wall/ceiling can be increased by up to 50% of the gap area, or decreased to the smallest amount possible that still provides sufficient space for the installation of the filling.

IN ACCORDANCE WITH EN 15650, EACH FIRE DAMPER MUST BE INSTALLED ACCORDING TO THE INSTALLATION. INSTRUCTIONS PROVIDED BY THE MANUFACTURER!

Installation, Maintenance & Operation

Some damper parts may have sharp edges – therefore to protect yourself from harm, please use gloves during damper installation and manipulation. In order to prevent electric shock, fire or any other damage which could result from incorrect damper usage and operation, it is important to:

- 1. Ensure that installation is performed by a trained person.
- 2. Follow the written and depicted instructions provided within Handbook closely.
- 3. Perform damper inspection in accordance with Handbook.
- 4. Check the damper's functionality as per the chapter "Fire Damper Functionality Check" before you install the fire damper. This procedure prevents the installation of a damper that has been damaged during transportation or handling.

Information about installation, maintenance and operation can be found at www.koolair.com.

Wet Installation

Using Plaster/Mortar/Concrete Filling

Important: Use support inside the damper when adding filling. The weight of the filling can damage or bend the damper casing.

- 1. The supporting construction opening must be prepared as depicted. Opening surfaces must be even and cleaned off. The flexible wall opening must be reinforced as per the standards for plasterboard walls. The opening dimensions are driven by the nominal dimensions of the damper with added clearance. For rectangular dampers, the opening will have the dimensions of W1 and H1.
- 2. Insert the closed damper into the middle of the opening so that the damper blade is in the wall. Use the bendable hanger (2; or hangers) to secure the damper against the wall using a suitable screw (F1; recommended screw diameter 5,5; e.g. DIN7981).
- 3. For damper widths greater than 800 mm, it is recommended to use a duct support inside the damper to avoid any damage, bend to the damper housing from the weight of the filling.
- 4. Fill in the area between the wall and the damper with plaster or mortar or concrete filling (2), while paying attention to prevent the fouling of the damper's functional parts, which could limit its correct functionality. The best way is to cover the functional parts during installation. The seepage of the filling material can be prevented by using boards. However, these are not required for wet installation. First let the plaster or mortar or concrete filling harden and then perform the next steps!
- 5. After the filling hardens, remove the duct support from inside of the damper.
- 6. If needed, uncover and clean the damper after installation.
- 7. Check the damper's functionality.

Installation Standard Distances

According to the standard EN 1366-2, the minimum distance from the wall or ceiling to the damper body is 75 mm. For multiple crossings through a fire-resistive wall the minimum distance between two damper bodies is 200 mm. This applies to distances between the damper and a nearby foreign object crossing the fire-resistive wall.

Installation - Smaller Distances - Maximum resistivity reduced to El90S

The distance between 2 individual fire dampers can be reduced to 60 mm, measured from surface to surface of the housing and the distance between the surface of the damper installed in the duct and the adjacent supporting construction (wall/floor) can be reduced to 40 mm, provided that the fire resistance classification will be reduced as follows: El90 (ve i <-> o) S.

Installation in a Wall thinner than tested

Installation in a thinner wall is allowed under the condition that an additional layer/layers of fire protective board are fixed to the surface of the wall in order to achieve the same length of damper penetration seal as was tested. The minimum width of added boards around the damper is 200 mm. In addition, the alternative thinner wall should be classified in accordance with EN 13501-2:2007 + A1: 2009 for fire-resistance required for product application. For a protruding wall, the additional layers must be fixed on the steel supporting construction of the wall.

1 Wet	FDS-3G 100 x 100 1200 x 800 (Subpressure: 300 Pa)	El 60 $(V_a h_o i \leftrightarrow o) S$ El 90 $(V_a h_o i \leftrightarrow o) S$ El 120 $(V_o h_o i \leftrightarrow o) S$	**************************************	60	c)	360°
	FDS-3G 100 x 100 1200 x 800	El 60 ($V_o h_o i \leftrightarrow o$) S El 90 ($V_o h_o i \leftrightarrow o$) S	o) #	b) [0]	c)	360°
1 Wet	1200 x 600 (Subpressure: 500 Pa)	El 120 (v _e h _e i ↔ o) S				₽ ⁄ \$

Legend

- **F1** Screw ≥ 5,5 DIN7981 or suitable wall plug and screw size 6.
- F2 Plaster/mortar/concrete filling
- 1 Fire damper (actuator side)
- 2 Bendable hanger
- 3 Concrete/masonry/cellular concrete wall or ceiling
- 4 Flexible (plasterboard) wall
- 4a 2 layers of plasterboard fireproof plate type F, EN 520
- 4b Vertical CW profiles
- 4c Horizontal CW profiles
- 4d Mineral wool; thickness/cubic density see picture.
- 5 Flexible (wood beam) wall
- **5a** Vertical spruce wooden beam ≥ 60 × 100 mm
- **5b** Horizontal spruce wooden beam ≥ 80 × 100 mm
- **6** Alternative thinner wall (classified in accordance with EN 13501-2:2007 + A1: 2009 for fire resistance required for product application)
- **7** Area of 200 mm from opening around the damper must have the same composition and be created the same way as Flexible (plasterboard) wall.

Notes

- a) Flexible (plasterboard) wall
- b) Concrete/masonry/cellular concrete (rigid) wall
- c) Concrete/cellular concrete (rigid) floor/ceiling
- ve Vertical wall
- ho Horizontal floor/ceiling
- 1) Smaller distances resistivity must be reduced to El90 (ve i<->o) S

Dry Installation

Using Mineral Wool and Cover Boards

- 1. The supporting construction opening must be prepared as depicted. Opening surfaces must be even and cleaned off. The flexible wall opening must be reinforced as per the standards for plasterboard walls. The opening dimensions are driven by the nominal dimensions of the damper with added clearance. For rectangular dampers, the opening will have dimensions of W1 and H1.
- 2. With FDS-3G dampers it is necessary to install the bendable hangers (2) onto the cover boards using suitable screws or screws with wall plug (F1). Insert the damper from the mechanism side and secure the bendable hangers of the damper into the cover board (FDS-3G). Subsequently mount the remaining cover boards from the mechanism side.
- 3. Fill in the area between the wall and the damper with mineral wool (F3) with a density of at least 50 kg/m3 thoroughly but in such a way that will not deform the damper housing, while paying attention to prevent the fouling of the damper's functional parts, which could limit its correct functionality.
- 4. Close the gap between the damper and the mounting opening, for a circular damper use CBR-FD cover boards, for a rectangular damper use CBS-FD cover boards with screws (F1) through pre-drilled holes.
- 5. All the gaps between the cover boards, between cover boards and the wall and between cover boards and the fire damper need to be filled with fire-resistive coating (F4).
- 6. If needed, uncover and clean the damper after installation.
- 7. Check the damper's functionality

Installation Standard Distances

For Dry installation, the minimum distance from the wall or ceiling to the damper body is 150 mm. For multiple crossings through a fire-resistive wall the minimum distance between two damper bodies is 300 mm. Distances between the damper and a nearby foreign object crossing the fire-resistive wall is 200 mm.

Installation in a Wall thinner than tested

Installation in a thinner wall is allowed under the condition that an additional layer/layers of fire protective board are fixed to the surface of the wall in order to achieve the same length of damper penetration seal as was tested. The minimum width of added boards around the damper is 200 mm. In addition, the alternative thinner wall should be classified in accordance with EN 13501-2:2007 + A1: 2009 for fire-resistance required for product application. For a protruding wall, the additional layers must be fixed on the steel supporting construction of the wall.

Legend

- **F1** Screw ≥ 5,5 DIN7981 or suitable wall plug and screw size 6.
- F3 Mineral wool filling (min. 50 kg/m3)
- F4 Fire resistive coating, e.g. Promastop-CC/Promat
- A1 Cover board CBS-FD (accessory) obligatory
- 1 Fire damper (actuator side)
- 2 Bendable hanger
- 3 Concrete/masonry/cellular concrete wall or ceiling
- 4 Flexible (plasterboard) wall
- 4a 2 layers of plasterboard fireproof plate type F, EN 520
- 4b Vertical CW profiles
- 4c Horizontal CW profiles
- 4d Mineral wool; thickness/cubic density see picture.
- 5 Flexible (wood beam) wall
- **5a** Vertical spruce wooden beam ≥ 60 × 100 mm
- **5b** Horizontal spruce wooden beam ≥ 80 × 100 mm
- **6** Alternative thinner wall (classified in accordance with EN 13501-2:2007 + A1: 2009 for fire resistance required for product application)
- **7** Area of 200 mm from opening around the damper must have the same composition and be created the same way as Flexible (plasterboard) wall.

Notes

- a) Flexible (plasterboard) wall
- **b)** Concrete/masonry/cellular concrete (rigid) wall
- c) Concrete/cellular concrete (rigid) floor/ceiling
- Ve Vertical wall
- ho Horizontal floor/ceiling

Soft installation

Installation into a Soft Crossing with fire-resistive coating

With this installation we recommend using flexible connection due to thermal expansion of connected ducts during fire. Install the compensator so, that the flexible part has a minimum distance of 50 mm from the edge of a damper's blade in open position.

- 1. The supporting construction opening must be prepared as depicted. Opening surfaces must be even and cleaned off. The flexible wall opening must be reinforced as per the standards for plasterboard walls. The opening dimensions are driven by the nominal dimensions of the damper with added clearance. For rectangular dampers, the opening will have the dimensions of W1 and H1.
- 2. Prepare mineral wool installation segments (F5) with thickness of the opening height. First apply a suitable fireresistive coating (F6) onto the damper at the place of its future placement, assemble and glue the filling of the future installation with the same fire-resistive coating. After the fire-resistive coating has dried, the damper and the filling are ready for installation.
- 3. Apply the same fire-resistive coating (F6) onto the internal surface of the wall opening. Also apply the fireresistive coating on the external surface of the filling glued on the damper surface. Immediately after the fireresistive coating is applied, place the damper into the wall opening. The damper blade must be located in the supporting structure.
- 4. After inserting the damper into the opening and fixing it using the bendable hangers and suitable screws (F1), apply the same fire-resistive coating (F6), at least 2 mm thick and 100 mm wide, on the exposed filling and wall edges evenly from both sides. Do not apply this layer in the place where the mechanism is located, inspection openings and manufacturer labels.
- 5. If needed, uncover and clean the damper after installation.
- 6. Check the damper's functionality.

Installation - Standard Distances

According to the standard EN 1366-2, the minimum distance from the wall or ceiling to the damper body is 75 mm. For multiple crossings through a fire-resistive wall the minimum distance between two damper bodies is 200 mm. This applies to distances between the damper and a nearby foreign object crossing the fire-resistive wall.

Installation - Smaller Distances

The distance between 2 individual fire dampers can be reduced to 60 mm, measured from surface to surface of the housing and the distance between the surface of the damper installed in the duct and the adjacent supporting construction (wall/floor) can be reduced to 40 mm.

Installation in a Wall thinner than tested

Installation in a thinner wall is allowed under the condition that an additional layer/layers of fire protective board are fixed to the surface of the wall in order to achieve the same length of damper penetration seal as was tested. The minimum width of added boards around the damper is 200 mm. In addition, the alternative thinner wall should be classified in accordance with EN 13501-2:2007 + A1: 2009 for fire-resistance required for product application. For a protruding wall, the additional layers must be fixed on the steel supporting construction of the wall.

	FDS-3G	El 60 ($v_e i \leftrightarrow o$) 5 El 90 ($v_e i \leftrightarrow o$) 5	a) 4	b) [[a]	(
3 Soft	100 x 100 1200 x 800 (Subpressure: 300 Pa)	EI 60 ($h_o i \leftrightarrow o$) S EI 90 ($h_o i \leftrightarrow o$) S EI 120 ($h_o i \leftrightarrow o$) S	c) <		360°

Legend

- **F1** Screw ≥ 5,5 DIN7981 or suitable wall plug and screw size 6.
- F5 Mineral wool segment (minimum 150 kg/m3).
- F6 Layer of fire resistive coating (Promastop-CC/Promat) at least 2 mm thick for exposed surfaces.
- 1 Fire damper (actuator side)
- 2 Bendable hanger
- 3 Concrete/masonry/cellular concrete wall or ceiling
- 4 Flexible (plasterboard) wall
- 4a 2 layers of plasterboard fireproof plate type F, EN 520
- 4b Vertical CW profiles
- 4c Horizontal CW profiles
- 4d Mineral wool; thickness/cubic density see picture.
- 5 Flexible (wood beam) wall
- **5a** Vertical spruce wooden beam ≥ 60 × 100 mm
- **5b** Horizontal spruce wooden beam ≥ 80 × 100 mm
- **6** Alternative thinner wall (classified in accordance with EN 13501-2:2007 + A1: 2009 for fire resistance required for product application)
- **7** Area of 200 mm from opening around the damper must have the same composition and be created the same way as Flexible (plasterboard) wall.

Notes

- a) Flexible (plasterboard) wall
- b) Concrete/masonry/cellular concrete (rigid) wall
- c) Concrete/cellular concrete (rigid) floor/ceiling
- Ve Vertical wall
- ho Horizontal floor/ceiling
- 1) Smaller distances resistivity maximum El90 (ve i<->o) S

Installation Hilti

Filling made only from Hilti foam

With this installation we recommend using flexible connection due to thermal expansion of connected ducts during fire. Install the compensator so, that the flexible part has a minimum distance of 50 mm from the edge of a damper's blade in open position.

Tip: Excess material can be reused as the filling for this installation. It can be inserted into the cavity before you add new foam from the gun.

- 1. The supporting construction opening must be prepared as depicted. Opening surfaces must be even and cleaned off. The flexible wall opening must be reinforced as per the standards for plasterboard walls. The opening dimensions are driven by the nominal dimensions of the damper with added clearance. For rectangular dampers, the opening will have the dimensions of W1 and H1.
- 2. Insert the damper into the opening concentric and fixing it with the opening using the bendable hangers and suitable screws (F1).
- 3. Wear protective gloves when handling foam. Insert the barrel of the foam gun into the middle of the cavity between damper and opening and fill it completely with foam (F17) pushed out foam can be quickly hand pushed back into the cavity.
- 4. After the filling (F17) is solidified, though it will always remain partly flexible, you can cut the excess foam that stands out from the wall.
- 5. If needed, uncover and clean the damper after installation.
- 6. Check the damper's functionality

Installation - Standard Distances

According to the standard EN 1366-2, the minimum distance from the wall or ceiling to the damper body is 75 mm. For multiple crossings through a fire-resistive wall the minimum distance between two damper bodies is 200 mm. This applies for distances between the damper and a nearby foreign object crossing the fire-resistive wall.

Installation - Smaller Distances

The distance between 2 individual fire dampers can be reduced to 60 mm, measured from surface to surface of the housing and the distance between the surface of the damper installed in the duct and the adjacent supporting construction (wall/floor) can be reduced to 40 mm.

Installation in a Wall thinner than tested

Installation in a thinner wall is allowed under the condition that an additional layer/layers of fire protective board are fixed to the surface of the wall in order to achieve the same length of damper penetration seal as was tested. The minimum width of added boards around the damper is 200 mm. In addition, the alternative thinner wall should be classified in accordance with EN 13501-2:2007 + A1: 2009 for fire-resistance required for product application. For a protruding wall, the additional layers must be fixed on the steel supporting construction of the wall.

El 60 (V_e - i \leftrightarrow 0) S

Legend

F1 Screw ≥ 5,5 e.g. DIN7981 or suitable wall plug and screw size 6.

F17 Foam CFS-F FX/HILTI.

- 1 Fire damper (actuator side)
- 2 Bendable hanger
- 3 Concrete/masonry/cellular concrete wall or ceiling
- 4 Flexible (plasterboard) wall
- 4a 2 layers of plasterboard fireproof plate type F, EN 520
- 4b Vertical CW profiles
- 4c Horizontal CW profiles
- 4d Mineral wool; thickness/cubic density see picture.
- 5 Flexible (wood beam) wall
- **5a** Vertical spruce wooden beam ≥ 60 × 100 mm
- **5b** Horizontal spruce wooden beam ≥ 80 × 100 mm
- **6** Alternative thinner wall (classified in accordance with EN 13501-2:2007 + A1: 2009 for fire resistance required for product application)
- **7** Area of 200 mm from opening around the damper must have the same composition and be created the same way as Flexible (plasterboard) wall.

Notes

- a) Flexible (plasterboard) wall
- b) Concrete/masonry/cellular concrete (rigid) wall
- Ve Vertical wal
- 1) Smaller distances maximum resistivity EI90 (ve i<->o) S

ON & OUT of the wall installation, El90S

Using 2 layers of Mineral Wool

TIP: The duct-wall cavity filling can be also replaced by plaster/mortar/concrete (F2) as a replacement of filling (F9), then the coating (F10) is not needed for the cavity filling.

- 1. The supporting construction opening must be prepared as depicted. Opening surfaces must be even and cleaned off. The flexible wall opening must be reinforced as per the standards for plasterboard walls. The opening dimensions are driven by the nominal dimensions of the damper with added clearance. For rectangular dampers, the opening will have the dimensions of W1 and H1.
- 2. Insert the duct into the load-bearing structure along with the damper in such a way that the duct will stick out of the wall to the needed distance. Press the insulation around the duct (F9) and cut its edges to even it with the wall surface. Paint the insulation surface in alignment with the wall with a suitable coat of paint (F10) up to 100 mm from the duct to cover the insulation and part of the wall. Or use filling (F2) as per WET installation.
- 3. Hang the square damper, surrounded in its perimeter with U-profiles (22) or tubular frame, in the blade location onto the threaded rods (20) min. M10.
- 4. Insulate the damper and duct parts between the damper and the wall. Glue the insulation onto the wall using suitable fire-resistive coating (F10).
- 5. Secure the insulation:
- for FDS-3G onto the square duct in two 90 mm layers. Using 90 mm (1st layer) and 180 mm (2nd layer) long welding pins (18, 19).
- 6. Cover the insulation face and perimeter up to 150 mm from the insulation edge using galvanized sheet metal (accessory A3), secure the sheet against the damper housing through accessories holes. Any protruding screws which could stand in the way of the blade during its opening need to be shortened so that they don't prevent blade movement.
- 7. If needed, uncover and clean the damper after installation.
- 8. Make sure the fixing screws are not interfering with the blade movement and check the damper's functionality.

Duct rules

The rules for hanger placement and duct suspension depend on the damper's distance from the supporting construction. The desired distance from the wall to the end of the duct connection with the damper divides the rules into two groups:

- Distance from 35 mm to max. 1500 mm.
- Distance greater than 1500 mm

Installation Distances

For installation 5.1 ON & OUT, the minimum distance from the wall or ceiling to the damper body is 40 mm. For multiple crossings through a fire-resistive wall the minimum distance between two damper bodies is 400 mm. The distance of 200 mm applies for distances between the damper and a nearby foreign object crossing the fire-resistive wall.

Legend

F1 Screw ≥ 5,5 DIN7981 or suitable wall plug and screw size 6.

F7 L-profile $60 \times 40 \times 3$ mm, length W + 300 mm or WL + 300 mm

F8 Screw 3,9 × max. 13 DIN7504

F9 Mineral wool segment (min. 66 kg/m3) - in a wall

F10 Layer of fire resistive coating (BSF/ISOVER) at least 2 mm thick for exposed surfaces

F11 Sheet metal belt 40 × 2 mm bent into an L shape of 35 and 160 mm

A3a Insulation front cover; min. thickness 0,9 mm

A3b Calcium silicate board 60 × 20 mm

A3c Steel frame made from HILTI profile; e.g. MQ31 (for FDS-3G)

1 Fire damper (actuator side)

3 Concrete/masonry/brick/cellular concrete wall or ceiling

4 Flexible (plasterboard) wall

4a 2 layers of plasterboard fireproof plate type F, EN 520

4b Vertical CW - profiles

4c Horizontal CW - profiles

4d Mineral wool; thickness/cubic density see picture.

17 Mineral wool segment ULTIMATE Protect Slab 4.0 Alu1/ISOVER (min. 66 kg/m3) - inner layer & outer layer

18 Welding pin, length 180 or 200 mm - Top without welding pins, side 20 pins/m2, bottom 20 pins/m2; distance between pins max. 250 mm, distance of the pin from the edge 80 mm

19 Welding pin – length 90 or 100 mm - Top without welding pins, side 20 pins/m2, bottom 20 pins/m2; distance between pins max. 250 mm, distance of the pin from the edge 80 mm

20 Steel threaded rod M10

21 Steel threaded rod M8

22 U-profile (MQ31/HILTI)

23 Damper insulation frame's screw

24 Sheet metal plate 85 × 40 × 2,5 mm

Notes

- a) Flexible (plasterboard) wall
- b) Concrete/masonry/cellular concrete (rigid) wall

Ve - Vertical wall

5 Rules for hanger placements and duct suspensions depend on the dampers distance from the supporting construction LE

7 The distance P is the distance from the blade axis to the damper flange. The distance depends on the type of damper used.

6 Rules for hanger placements LP and duct suspensions LS depend on the damper's distance from the supporting construction LE

F2 Plaster/mortar/concrete filling - can serve as replacement of filling F9. Using Plaster/mortar/concrete filling the coating F10 is not needed.

5.2 ON & OUT of the wall installation, El60S

Using 1 layer of Mineral Wool

TIP: The duct-wall cavity filling can be also replaced by plaster/mortar/concrete (F2) as a replacement of filling (F9), then the coating (F10) is not needed for the cavity filling. Damper Preparation before Installation: Fasten the rectangular damper in the blade/perforation location only on the top and bottom sides with U-profiles (28), and then fasten the U-profiles together by using the threaded rod M10 (20).

- 1. The supporting construction opening must be prepared as depicted. Opening surfaces must be even and cleaned off. The flexible wall opening must be reinforced as per the standards for plasterboard walls. The opening dimensions are driven by the nominal dimensions of the damper with added clearance. For rectangular dampers, the opening will have the dimensions of W1 and H1.
- 2. Insert the duct into the load-bearing structure along with the damper in such a way that the duct will stick out of the wall to the needed distance. Press the insulation around the duct (F9) and cut its edges to even it with the wall surface. Paint the insulation surface in alignment with the wall with a suitable coat of paint (F10) up to 100 mm from the duct to cover the insulation and part of the wall. Or use filling (F2) as per WET installation.
- 3. Reinforce the rectangular duct with stiffening rods (30) along the insulated duct. The first cross is placed on the wall, the others at distances of LS.
- 4. Insulate the damper and duct parts between the damper and the wall. Glue the insulation (29) in one 80 mm layer onto the wall around the duct by using a suitable fire-resistive coating (F10). Secure the insulation (29) using 80 mm long welding pins (27). The actuator, thermosensor, and inspection lid must remain uninsulated with a gap of a maximum of 20 mm.
- 5. Around the front side and on all surfaces that are not covered with aluminum foil, apply aluminum tape (25).
- 6. If needed, uncover and clean the damper after installation.
- 7. Make sure the fixing screws are not interfering with the blade movement and check the damper's functionality.

Duct rules

The rules for hanger placement and duct suspension depend on the damper's distance from the supporting construction. The desired distance from the wall to the end of the duct connection with the damper divides the rules into two groups:

- Distance from 35 mm to max. 1500 mm
- Distance greater than 1500 mm

Installation Distances

For installation 5.2 ON & OUT, the minimum distance from the wall or ceiling to the damper body is 40 mm. For multiple crossings through a fire-resistive wall the minimum distance between two damper bodies is 200 mm. The distance of 200 mm also applies for distances between the damper and a nearby foreign object crossing the fireresistive wall.

Legend

F9 Mineral wool segment (min. 66 kg/m3) - in a wall

F10 Layer of fire resistive coating (BSF/ISOVER) at least 2 mm thick for exposed surfaces

- 1 Fire damper (actuator side)
- 3 Concrete/masonry/brick/cellular concrete wall or ceiling
- 4 Flexible (plasterboard) wall
- 4a 2 layers of plasterboard fireproof plate type F, EN 520
- 4b Vertical CW profiles
- 4c Horizontal CW profiles
- 4d Mineral wool; thickness/cubic density see picture.
- 20 Steel threaded rod M10
- 25 Aluminium tape around the front side and on places uncovered with alufoil
- 27 Welding pin length 80 mm Top without welding pins, side 20 pins/m2, bottom 20 pins/m2; distance between pins max. 250 mm, distance of the pin from the edge 80 mm
- 28 U-profile (MQ31/HILTI) top and bottom
- 29 Mineral wool segment thickness 80 mm (min. 66 kg/m3; ISOVER Ultimate U-Protect Slab 4.0 Alu1)
- **30** Stiffening rods: horizontal for W > 600 mm; vertical for H > 400 mm

Notes

- a) Flexible (plasterboard) wall
- b) Concrete/masonry/cellular concrete (rigid) wall
- ve Vertical wall
- **5** Rules for hanger placements and duct suspensions depend on the dampers distance from the supporting construction LE
- **6** Rules for hanger placements LP and duct suspensions LS depend on the damper's distance from the supporting construction LE
- **7** The distance P is the distance from the blade axis to the damper flange. The distance depends on the type of damper used.
- **F2Plaster/mortar/concrete filling can serve as replacement of filling F9. Using Plaster/mortar/concrete filling the coating F10 is not needed.

5.3 ON & OUT of the wall installation, maximum El90S

Using Promatect Boards

TIP: The duct-wall cavity filling (F12) and its coating (F13) can be also replaced by plaster/mortar/concrete (F2). Damper Preparation before Installation:Attach all 4 parts of the IKOWS-FD accessory around the casing where the damper blade is situated, as shown in picture and apply a suitable fire-resistive coating (F13) to the contact surfaces of the boards and the damper. Fasten them together using the screws included in the IKOWS-FD package.

- 1. The supporting construction opening must be prepared as depicted. Opening surfaces must be even and cleaned off. The flexible wall opening must be reinforced as per the standards for plasterboard walls. The opening dimensions are driven by the nominal dimensions of the damper with added clearance. For rectangular dampers, the opening will have the dimensions of W1 and H1.
- 2. Insert the duct into the load-bearing structure along with the damper in such a way that the duct will stick out of the wall to the needed distance. Press the insulation around the duct (F12) and cut its edges to even it with the wall surface.
- 3. Paint the insulation surface in alignment with the wall with a suitable coat of paint (F13) up to 100 mm from the duct to cover the insulation and part of the wall. Or use filling (F2) as per WET installation.
- 4. Fit 4 boards (F15) of 100 mm in width around the duct and secure them using suitable screws (F1) to the wall; fasten an L-profile (F14) to the wall and the duct on the damper side; fasten 4 boards (32) by joining them together in corners by screws.
- 5. Cover the IKOWS-FD accessory (A4) and the boards (32) along the entire length with 40 mm thick boards (31); apply fire-resistive coating (F13) to all joints and fix with screws (33).
- 6. Bind the damper in the blade location using a profile (34) at the top and bottom damper side, using threaded rods (20) and nuts. The threaded rods are to be at a distance of max. 50 mm from the side insulation surface.
- 7. If needed, uncover and clean the damper after installation.
- 8. Make sure the fixing screws are not interfering with the blade movement and check the damper's functionality.

Duct rules

The rules for hanger placement and duct suspension depend on the damper's distance from the supporting construction. The desired distance from the wall to the end of the duct connection with the damper divides the rules into two groups:

- Distance from 35 mm to max. 1500 mm.
- Distance greater than 1500 mm.

Installation Distances

For installation 5.3 ON & OUT, the minimum distance from the wall or ceiling to the damper body is 40 mm. For multiple crossings through a fire-resistive wall the minimum distance between two damper bodies is 200 mm. The distance of 200 mm applies for distances between the damper and a nearby foreign object crossing the fire-resistive wall.

Legend

- **F1** Screw ≥ 5,5 DIN7981 or suitable wall plug and screw size 6.
- F12 Mineral wool segment thickness of 50 mm; min. 150 kg/m3 in a wall
- F13 Fire resistive coating; Promat kleber K84/Promat
- F14 Steel L-profile 25 × 25 × 2 mm
- F15 Gypsum board thickness of 15 mm; width min. 100 mm
- A4 Installation kit IKOWS-FD-W×H (accessory)
- 1 Fire damper (actuator side)
- 3 Concrete/masonry/brick/cellular concrete wall or ceiling
- 4 Flexible (plasterboard) wall
- 4a 2 layers of plasterboard fireproof plate type F, EN 520
- 4b Vertical CW profiles
- 4c Horizontal CW profiles
- 4d Mineral wool; thickness/cubic density see picture.
- 20 Steel threaded rod M10
- 31 Calcium silicate board thickness of 40 mm; Promatect L500/Promat
- 32 Calcium silicate board; thickness 40 (20 + 20) × 100 mm; Promatect L500/Promat
- 33 Screw 5 × 80; DIN7997
- 34 U-profile (MQ41/HILTI)
- **38** Duct W × H that is eventually connected to the damper (damper is not depicted)
- 39 Mineral wool segment; thickness 40 mm/min. 40 kg/m3 (only El60)
- 40 Calcium silicate board; thickness 20 mm (El60) or 40 mm (El90); Promatect L500/Promat
- **41** Steel L-profile 60 × 40 × 1 mm
- 42 Calcium silicate board; thickness 40 × 60 mm; Promatect L500/Promat
- 43 Screw with coak; span max. 250 mm
- 44 Corner connector; MQP-1/HILTI

Notes

- a) Flexible (plasterboard) wall
- b) Concrete/masonry/cellular concrete (rigid) wall
- Ve Vertical wall
- **5** Rules for hanger placements and duct suspensions depend on the dampers distance from the supporting construction LE
- **6** Rules for hanger placements LP and duct suspensions LS depend on the damper's distance from the supporting construction LE
- **7** The distance P is the distance from the blade axis to the damper flange. The distance depends on the type of damper used.
- 8 The hanger must be placed a max. of 50 mm from the edge of the IKOWS-FD.
- **9** LP The recommended length of the Promatect boards from the producer is 1250 mm; the legally allowed hanger span is 1500 mm.
- **F2** Plaster/mortar/concrete filling can serve as replacement of filling (F12). Using Plaster/mortar/concrete filling the coating (F13) for in the wall mineral wool is not needed.

5.4 ON & OUT of the wall installation, maximum El60S

Using Promatect Boards

TIP: The duct-wall cavity filling (F12) and its coating (F13) can be also replaced by plaster/mortar/concrete (F2). Damper Preparation before Installation:Attach all 4 parts of the IKOWS-FD accessory around the casing where the damper blade is situated, as shown in picture and apply a suitable fire-resistive coating (F13) to the contact surfaces of the boards and the damper. Fasten them together using the screws included in the IKOWS-FD package.

- 1. The supporting construction opening must be prepared as depicted. Opening surfaces must be even and cleaned off. The flexible wall opening must be reinforced as per the standards for plasterboard walls. The opening dimensions are driven by the nominal dimensions of the damper with added clearance. For rectangular dampers, the opening will have the dimensions of W1 and H1.
- 2. Insert the duct into the load-bearing structure along with the damper in such a way that the duct will stick out of the wall to the needed distance. Press the insulation around the duct (F12) and cut its edges to even it with the wall surface.
- 3. Paint the insulation surface in alignment with the wall with a suitable coat of paint (F13) up to 100 mm from the duct to cover the insulation and part of the wall. Or use filling (F2) as per WET installation.
- 4. Fit 4 boards (F15) of 100 mm in width around the duct and secure them using suitable screws (F1) to the wall; fasten an L-profile (F14) to the wall and the duct on the damper side; fasten 4 boards (F15) by joining them together in corners with screws.
- 5. Insert mineral wool segments (37) around the duct perimeter between the boards (35) and the IKOWS-FD accessory (A4). Cover the IKOWS-FD accessory (A4) and the boards (35) along the entire length with 20 mm thick boards (36); apply fire-resistive coating (F13) to all joints and fix the boards with screws (33).
- 6. Bind the damper in the blade location using a profile (34) at the top and bottom damper side, using threaded rods (20) and nuts. The threaded rods are to be at a distance of a max. of 50 mm from the side insulation surface.
- 7. If needed, uncover and clean the damper after installation.
- 8. Make sure the fixing screws are not interfering with the blade movement and check the damper's functionality.

Duct rules

The rules for hanger placement and duct suspension depend on the damper's distance from the supporting construction. The desired distance from the wall to the end of the duct connection with the damper divides the rules into two groups:

- Distance from 35 mm to max. 1500 mm.
- Distance greater than 1500 mm.

Installation Distances

For installation 5.4 ON & OUT, the minimum distance from the wall or ceiling to the damper body is 40 mm. For multiple crossings through a fire-resistive wall the minimum distance between two damper bodies is 200 mm. The distance 200 mm applies for distances between the damper and a nearby foreign object crossing the fire-resistive wall.

Installation in a Wall thinner than tested

Installation in a thinner wall is allowed under the condition that an additional layer/layers of fire protective board are fixed to the surface of the wall in order to achieve the same length of damper penetration seal as was tested. The minimum width of added boards around the damper is 200 mm. In addition, the alternative thinner wall should be classified in accordance with EN 13501-2:2007 + A1: 2009 for fire-resistance required for product application. For a protruding wall, the additional layers must be fixed on the steel supporting construction of the wall.

Legend

F1 Screw ≥ 5,5 DIN7981 or suitable wall plug and screw size 6.

F12 Mineral wool segment thickness of 50 mm; min. 150 kg/m3 - in a wall

F13 Fire resistive coating; Promat kleber K84/Promat

F14 Steel L-profile 25 × 25 × 2 mm

F15 Gypsum board thickness of 15 mm; width min. 100 mm

A4 Installation kit IKOWS-FD-W×H (accessory)

Notes

- 1 Fire damper (actuator side)
- 3 Concrete/masonry/brick/cellular concrete wall or ceiling
- 4 Flexible (plasterboard) wall
- 4a 2 layers of plasterboard fireproof plate type F, EN 520
- 4b Vertical CW profiles
- 4c Horizontal CW profiles
- **4d** Mineral wool; thickness/cubic density see picture.
- 20 Steel threaded rod M10
- 32 Calcium silicate board; thickness 40 (20 + 20) × 100 mm; Promatect L500/Promat
- **33** Screw 5 × 80; DIN7997
- 34 U-profile (MQ41/HILTI)
- 35 Calcium silicate board thickness of 20 mm; width min. 100 mm; 2 layers; Promatect L500/Promat
- 36 Calcium silicate board thickness of 20 mm; Promatect L500/Promat
- 37 Mineral wool segment thickness of 40 mm; min. 45 kg/m3
- **38** Duct W × H that is eventually connected to the damper (damper is not depicted)
- 39 Mineral wool segment; thickness 40 mm/min. 40 kg/m3 (only El60)
- 40 Calcium silicate board; thickness 20 mm (El60) or 40 mm (El90); Promatect L500/Promat
- 41 Steel L-profile 60 × 40 × 1 mm
- 42 Calcium silicate board; thickness 40 × 60 mm; Promatect L500/Promat
- 43 Screw with coak; span max. 250 mm
- 44 Corner connector; MQP-1/HILTI

Notes

- a) Flexible (plasterboard) wall
- b) Concrete/masonry/cellular concrete (rigid) wall
- Ve Vertical wall
- **5** Rules for hanger placements and duct suspensions depend on the dampers distance from the supporting construction LE
- **6** Rules for hanger placements LP and duct suspensions LS depend on the damper's distance from the supporting construction LE
- **7** The distance P is the distance from the blade axis to the damper flange. The distance depends on the type of damper used.
- 8 The hanger must be placed a max. of 50 mm from the edge of the IKOWS-FD.
- **9** LP The recommended length of the Promatect boards from the producer is 1250 mm; the legally allowed hanger span is 1500 mm.
- **F2** Plaster/mortar/concrete filling can serve as replacement of filling (F12). Using Plaster/mortar/concrete filling the coating (F13) for in the wall installed mineral wool is not needed.

T/PC/A - Activation Type / Power Consumption / Actuator

8		W (mm)								
T/PC/A		350	006	950	000	020	100	1120	1150	1200
<u> </u>	100	~	Ψ,	Ψ.					•	
H (mm)	150									
	175									
	180									
	200	B230T/6,5 VA/BFL230-T B24T/4 VA/BFL24-T								
	250	B24T-W/4 VA/BFL24-T-ST								
	300									
	315									
	350									
	355									
	400									
	450									
	500									
	550									
	560									
	600	B230T/10 VA/BFN230-T B24T/6 VA/BFN24-T B24T-W/6 VA/BFN24-T-ST								
	630									
	650									
	700									
	710									
	750									
	800									

T/PC/A - Activation Type / Power Consumption / Actuator

Type of activation H0

This type of activation mechanism does not have any electrical equipment.

Type of activation H2

IMPORTANT: Danger of electric shock!

Switch off the power supply before working on any electrical equipment.

Allow only qualified electricians to work on the electrical system.

Microswitch:Power Supply: AC 125/250 V or DC 12/24 V

Electric Parameters: 3A

NOTES:

• Supply via safety isolation transformer!

- 1 Grey cable colour
- 2 Orange cable colour
- 3 Pink cable colour
- 4 White cable colour
- 5 Red cable colour
- **6** Brown cable colour (Do not use for type of activation H2)
- X:7 Blue cable colour (Do not use for type of activation H2)

Type of activation H5-2

IMPORTANT: Danger of electric shock!

Switch off the power supply before working on any electrical equipment.

Allow only qualified electricians to work on the electrical system.

Microswitch:

Power Supply: AC 125/250 V or DC 12/24 V

Electric Parameters: 3A Impulse Electromagnet:

Power Supply: AC (50/60 Hz)/DC 24 V

Electric Parameters: 50 VA, load factor 10% (maximum 30 seconds in operation)

NOTES:

- 50 VA = Nominal activation power, maximum permissible magnet load = 300 VA
- · Supply via safety isolation transformer.
- · Power consumption must be monitored!

- 1 Grey cable colour
- 2 Orange cable colour
- 3 Pink cable colour
- 4 White cable colour
- 5 Red cable colour
- 6 Brown cable colour
- X:7 Blue cable colour

Type of activation H6-2

IMPORTANT: Danger of electric shock!

Switch off the power supply before working on any electrical equipment.

Allow only qualified electricians to work on the electrical system.

Microswitch:

Power Supply: AC 125/250 V or DC 12/24 V

Electric Parameters: 3A Impulse Electromagnet:

Power Supply: AC 230 V, 50/60 Hz

Electric Parameters: 50 VA, load factor 10% (maximum 30 seconds in operation)

NOTES:

- 50 VA = Nominal activation power, maximum permissible magnet load = 300 VA
- · Caution! Main power supply voltage!
- A device that disconnects the pole conductors (minimum contact gap 3 mm) is required for isolation from the power supply.
- Power consumption must be monitored!

- 1 Grey cable colour
- 2 Orange cable colour
- 3 Pink cable colour
- 4 White cable colour
- 5 Red cable colour
- 6 Brown cable colour
- X:7 Blue cable colour

Type of activation B230T

IMPORTANT: Danger of electric shock!

Switch off the power supply before working on any electrical equipment.

Allow only qualified electricians to work on the electrical system.

Actuator power supply: AC 230 V, 50/60 Hz

NOTES:

- · Caution! Main power supply voltage!
- A device that disconnects the pole conductors (minimum contact gap 3 mm) is required for isolation from the power supply.
- Parallel connection of several actuators possible.
- Power consumption must be monitored!

- 1 Blue cable colour
- 2 Brown cable colour
- \$1 Violet cable colour
- \$2 Red cable colour
- \$3 White cable colour
- \$4 Orange cable colour
- S5 Pink cable colour
- **S6** Grey cable colour
- Tf Thermal fuse

Type of activation B24T

IMPORTANT: Danger of electric shock!

Switch off the power supply before working on any electrical equipment.

Allow only qualified electricians to work on the electrical system.

Actuator power supply: AC (50/60 Hz)/DC 24 V

NOTES:

- · Supply via safety isolation transformer.
- Parallel connection of several actuators possible.
- Power consumption must be monitored!

- 1 Blue cable colour (black for BF24-T)
- 2 Red cable colour (white for BF24-T)
- **\$1** Violet cable colour (white for BF24-T)
- **S2** Red cable colour (white for BF24-T)
- \$3 White cable colour (white for BF24-T)
- **S4** Orange cable colour (white for BF24-T)
- **\$5** Pink cable colour (white for BF24-T)
- \$6 Grey cable colour (white for BF24-T)
- Tf Thermal fuse

Type of activation B24T-W

IMPORTANT: Danger of electric shock!

Switch off the power supply before working on any electrical equipment.

Allow only qualified electricians to work on the electrical system.

This type of activation is with provided cable connectors for the supply and communication unit (communication unit not part of the mechanism).

Actuator power supply: AC (50/60 Hz)/DC 24 V

NOTES:

- · Supply via safety isolation transformer.
- · Parallel connection of several actuators possible.
- · Power consumption must be monitored!

- 1 Blue cable colour (black for BF24-T) in connector 1
- 2 Brown cable colour (white for BF24-T) in connector 1
- \$1 Violet cable colour (white for BF24-T) in connector 2
- S2 Red cable colour (white for BF24-T) in connector 2
- \$3 White cable colour (white for BF24-T) in connector 2
- **S4** Orange cable colour (white for BF24-T) in connector 2
- \$5 Pink cable colour (white for BF24-T) in connector 2
- S6 Grey cable colour (white for BF24-T) in connector 2
- Tf Thermal fuse

Operation Manual

Warning

To avoid injury, make sure to wear gloves and keep the blades movement area clear while manipulating with the damper.

Fire Damper Functionality Check

Manually Operated Activation Mechanism

- 1. Open the damper turn the red crank (P10) using an Allen bent wrench No. 10 (P13). Turn the red crank so that the indicator arrow is pointing to the "OPEN" position (P11), the red crank needs to remain in the "OPEN" position, and the microswitch for the open position indication must be pushed (if installed).
- 2. Close the damper release the mechanism by pressing the red release button (P9), the red crank will adjust its indicator arrow pointing to the "CLOSED" position (P12) and remain locked in this position, the microswitch for the closed position indication must be pushed (if installed).
- 3. Open the damper turn the red crank (P10) using an Allen bent wrench No. 10. (P13) Turn the red crank so that the indicator arrow is pointing to the "OPEN" position, the red crank needs to remain in the "OPEN" position, and the microswitch for the open position indication must be pushed (if installed).

Spring Return Actuator Operated Activation Mechanism

- 1. The fire damper must open automatically after the actuator circuit closes the arrow on the actuator axis must show the position 90°.
- 2. Press the control switch (P9) on the Thermoelectric fuse and hold it until the fire damper is fully closed the arrow on the actuator axis must show the position 0° .
- 3. Release the control switch on the Thermoelectric fuse. The fire damper must become fully open the arrow on the actuator axis must show the position 90° which is the operating position.

Smoke detector and spring return actuator operated activation mechanism

- 1. The fire damper must open automatically after the actuator circuit closes the arrow on the actuator axis must show the position 90°.
- 2. Press the control switch (P9) on the Thermoelectric fuse and hold it until the fire damper is fully closed the arrow on the actuator axis must show the position 0° .
- 3. Release the control switch (P9) on the Thermoelectric fuse. The fire damper must now open automatically.
- 4. Press the control switch on the smoke sensor and hold it until the fire damper is fully closed. Or use a smoke spray for sensor testing and spray into the grille directly onto the smoke detector. Check if the fire damper will fully close. After a while the smoke detector will clear itself from the testing spray and the damper will open again.
- 5. Release the control switch on the Thermoelectric fuse. The fire damper must become

Operation Manual

After installation, it is necessary to adjust the damper into its operating position – open the fire damper.

Spring Return Actuator Operated Activation Mechanism

Connect the electric driving mechanism to the relevant electric power supply (see Electrical connection section). The electromotor is activated and adjusts the damper into its open position.

Manually Operated Activation Mechanism

Turn the red crank into the "OPEN" position. The damper blade must remain in open position.

Operation Manual

Damper Inspection

The activation mechanism keeps the dampers on stand-by during their entire life cycle in accordance with this manual issued by the manufacturer. It is not permitted to alter the dampers in any way nor perform any changes to their structure without the manufacturer's consent. The operator performs regular checks of the dampers as per established regulations and standards at least once every 12 months. The check needs to be performed by an employee who has been specifically trained for this purpose. The current fire damper condition determined during the inspection needs to be entered into the operating logbook along with the date of the inspection, the legible name, surname and signature of the employee who performed the inspection. The Operating Journal includes a copy of the employee's authorization. If any discrepancies are discovered, these need to be entered in the Operating Journal along with a proposal for their removal.

The Operating Journal can be found in product documents section. Immediately after the installation and activation of the damper, it needs to be checked under the identical conditions as apply to the above mentioned 12-month inspections. The visual check ensures that visible damages on the inspected damper parts are seen. On its external side, the damper housing and the activation mechanism are checked. Due to the need to perform a visual check of the damper's internal parts, open the inspection lid. For small sizes there is the possibility of removing the mechanism to perform the inspection. The removable mechanism always needs to be returned back into the damper with the damper blade being closed. The damper's internal casing, thermal fuse, sealings, foaming substance, the damper blade condition, and accuracy of its closure during its leaning against the backstop in the closed position must all be checked. There must not be any strange objects or a layer of impurities from the air distribution systems inside the damper.

Recommended Inspection Steps According to the EN 15 650:

- 1. Damper identification
- 2. Date of inspection
- 3. Inspecting electric connection of the activation mechanism (where applicable)
- 4. Inspecting damper for cleanliness and possible need for cleaning (where needed)
- 5. Inspecting blade and sealing condition, possible correction and logging (where needed)
- 6. Inspecting proper fire damper closure
- 7. Inspecting damper functionality opening and closing using the control system, physical examination of the damper's behavior, possible correction and logging (where needed)
- 8. Inspecting end switches' functionality in the open and closed position, possible correction and logging (where needed)
- 9. Inspect whether the damper is fulfilling its role as part of the regulation system (where needed)
- 10. Inspect whether the damper remains in its standard operating position.
- 11. The damper is usually part of a system. In that case the whole system needs to be checked as described in its operation and requirements published by the builder of the system.

Supplement

Any deviations from the technical specifications should be discussed with the manufacturer. We reserve the right to make any changes to the product without prior notice, provided that these changes do not affect the quality of the product and the required parameters.

FDS-3G-KS

Description

Fire dampers with square Kit up to size 800x600 mm represent passive fire protection, designed with the help of compartmentalization to prevent the spread of toxic gases, smoke and fire. FDS-3G...KS fire dampers installation is designed with simplicity in mind. Standard fire dampers are designed and certified in accordance with EN 15650 and tested for EIS criteria according to EN 1366–2. By default, all fire dampers are supplied with an manual mechanism or actuator mechanism, optionally with a supply and communication unit.

IMPORTANT: The installation kit can not be delivered separately! The installation kit is delivered pre-mounted on a damper.

Design

Fire dampers have casings made from galvanized sheet metal. Blades from non-asbestos insulants have a rubber seal for cold smoke and an intumescent seal, that expands in a fire situation.

Material Composition

IMPORTANT: The installation kit can not be delivered separately! The installation kit is delivered pre-mounted on a damper.

Highlights

- Fast installation rated El60S, El90S, El120S
- · Casing tightness class C as standard
- Exceptionally low pressure drop
- · Changeable mechanism
- One inspection opening for all sizes greater than 200x200 mm
- Modulated actuator suitable for system balancing possibility to open the blade at the desired angle.

Overview

Activation Types

Manually Operated Fire Dampers

By default, all manually operated fire dampers are supplied with manual control, optionally with micro switches and electromagnets. In case of fire, the fire damper is closed automatically. Depending on the version, the damper closes either after the melting of the thermal fuse or by means of remote activation through an electromagnet in impulse connection. After the closing of the damper blade, it is mechanically locked in the closed position and can only be opened manually. The actuating mechanism is activated when the temperature of the air in the duct reaches 74°C and the damper closes within 10 seconds after the melting of the fuse.

· HO-KS

Fire damper with an activation mechanism with a cover, manual crank and with a spring return release mechanism activated by a fusible thermal link set to 74°C (on demand 100°C).

. H2-KS

Fire damper with an activation mechanism H0 + open and closed indication with AC 230 V or AC/DC 24 V contact switches.

• H5-2-KS

Fire damper with an activation mechanism H0 + a AC/DC 24 V electromagnetic release mechanism in the impulse connection (release takes place when the electromagnet is activated) + open and closed indication with AC 230 V or AC/DC 24 V contact switches.

• H6-2-KS

Fire damper with an activation mechanism H0 + an AC 230 V electromagnetic release mechanism in the impulse connection (release takes place when the electromagnet is activated) + open and closed indication with AC 230 V or AC/DC 24 V contact switches.

Overview

Activation Types

Actuator- Operated Fire Dampers

By default, all actuator operated fire dampers are supplied with an actuator with micro switches, optionally with a power and communication unit. A fire damper can be equipped with a spring return actuator can be closed with command from the building management system, or after the breaching of the thermoelectric fuse. Actuator operated fire dampers are standardly equipped with a thermoelectric fuse, that activates the closing of the damper after the reaching or exceeding of the ambient temperature of 72°C. The actuator power circuit is interrupted and its spring closes the damper blade within 20 seconds.

Belimo actuator available with on demand fuse 95 °C or 120 °C.

B230T

Fire damper with an activation mechanism with a Belimo spring return actuator (230V AC) with electrothermal fuse 72°C and auxiliary switches.

B24T

Fire damper with an activation mechanism with a Belimo spring return actuator (24V AC/DC) with electrothermal fuse 72°C and auxiliary switches.

B24T-W

Fire damper with an activation mechanism with a Belimo spring return actuator (24V AC/DC) with an electrothermal fuse 72°C and auxiliary switches, with provided cable connectors for the supply and communication unit (communication unit not part of the mechanism).

Design

The product contains galvanized sheet metal, calcium silicate board, fireproof carbon fiberglass, polyurethane foam and ethylene - propylene rubber. These are processed in accordance with local regulations. The product contains no hazardous substances, except for the solder in the thermofuse, which contains a milligram of lead.

List of Accessories

Detailed information about accessories for FDS-3G- KS can be found in the fire damper catalogue and technical selection guide.

AM-FD: Activation Mechanisms

Technical Parameters

Durability test

- 50 cycles/manually operated activation mechanism with no change of the required properties
- 10000 + 100 + 100 cycles/actuator operated activation mechanism with no change of the required properties

Fire testing pressure

Underpressure up to 300 Pa

Safety position

Closed. (In fire scenario the damper closes via spring in actuator or spring in manual mechanism)

Airflow direction

Both directions

Allowed air velocity

Damper can still operate at max. 12 m/s. Air without any mechanical or chemical contamination

Side with fire protection

Depending on installation classification: From both sides (i <-> o)

Repeated opening

Suitable for daily check procedure. It is not possible to operate the device after reaching Activation temperature.

Activation Temperature

- Manually operated: 74 °C as standard (100 °C on request) by means of a spring after the melting of the thermofuse.
- Actuator operated: 72 °C as standard (95 °C or 120 °C on request) by means of the spring after current interruption in the electro-thermal fuse.

Operational temperature

- Minimum: 0 °C
- Maximum: 60 °C for 74 °C and 72 °C thermofuse
- Maximum: 85 °C for 95 °C and 100 °C thermofuse
- Maximum 105 °C for 120 °C thermofuse

Environment suitability

Protected against weather disruptions, with temperature above 0 °C, up to 95% Rha, (3K5 according to EN 60721-3-3)

Open/Closed indication

- Manually operated microswitches Activation types H2-KS up to H6-2-KS
- Actuator operated built-in microswitches Activation types B230T-KS

Closing/Opening time

Manually operated < 10 s, actuator operated < 20 s

Inspection possibility

By opening of the inspection lid. For smaller sizes than 200 mm after removing of the activation mechanism, or a inspection opening must be added to the connected duct.

Maintenance

Not required. Dry cleaning if demanded by law in the country in which the dampers are installed.

Revisions

Determined by law in the country in which the fire dampers are installed but at least every 12 months.

Allowed pressure

1200 Pa

Blade tightness (STN EN 1751)

Class 2 as standard

Tightness of the housing (STN EN 1751)

Class C as standard

Conformity with EC directives

2006/42/EC Machinery Directive 2014/35/EU Low Voltage Directive 2014/30/EU Electromagnetic Compatibility Directive

Modulated Actuator

Can be set to any position when opening the blade - see types of activation mechanisms B24T-SR-KS

Driving actuator types

BF230-T, BF24-T, BFN230-T, BFN24-T, BFN24-T, BFL230-T, BFL24-T (also with connection possibilities with acronyms ST, W)

Transport and Storage

Dry indoor conditions with a temperature range of -20 °C to +50 °C

Product parts

- P1 Blade
- P2 Casing
- P3 Manually operated activation mechanism (H0;H...)
- P4 Actuator operated activation mechanism (B...)
- P5 Inspection lid
- P6 Thermoelectric fuse (BAT72)
- P9 Release and test button
- P10 Crank
- P11 Open position
- P12 Closed position
- P13 Hexagon bent wrench No.10 (not part of delivery)
- P14 Kit Base plate
- P15 Cover plate (PROMAT)
- P16 Intumex

Assessed Performance - FDS-3G

23 CE 1396

Safeair, S.L. (España)

Avda. San Isidro, nave C-3, 45223 Sesena - TOLEDO

1396-CPR-0231, FDS-3G

(valid for subgroups: KS...)

EN 15650: 2010

Rectangular fire dampers

Nominal activation conditions/sensitivity - Pass

- · sensing element load bearing capacity
- · sensing element response temperature

Response delay (response time) - Pass

· closure time

Operational reliability - Pass

- motorized cycle 10.200 cycles
- manual cycle 50 cycles
- modulated 20.200 cycles

Fire resistance:

Resistivity depending on installation method and situation

- integrity E
- maintenance of the cross section (under E)
- mechanical stability (under E)
- cross section (under E)
- insulation I
- smoke leakage S

Durability of response delay - Pass

· sensing element response temperature and load bearing capacity

Durability of operational reliability - Pass

· open and closing cycle

Diagrams

The pressure drop and A-weighted total discharged sound power level depend on the nominal width and height of the damper and air flow volume at different duct pressures. The type of activation does not influences the airflow parameter, therefore only one activation type is shown in the diagrams.

FDS-3G-KS
Pressure drop & A-weighted sound power level in db(A)

FDS-3G-KS
Pressure drop & A-weighted sound power level in db(A)

FDS-3G-KS
Pressure drop & A-weighted sound power level in db(A)

FDS-3G-KS
Pressure drop & A-weighted sound power level in db(A)

Diagrams

FDS-3G-KS
Pressure drop & A-weighted sound power level in db(A)

FDS-3G-KS
Pressure drop & A-weighted sound power level in db(A)

Free area

	/2\										W (r	nm)	X40 - 1								
٨	(m²)	100	150	200	250	300	315	350	355	400	450	500	550	560	600	630	650	700	710	750	800
	100	0,007	0,010	0,014	0,018	0,022	0,023	0,026	0,026	0,030	0,030	0,034	0,037	0,038	0,041	0,043	0,044	0,048	0,049	0,051	0,055
	150	0,011	0,015	0,021	0,027	0,033	0,034	0,038	0,039	0,044	0,047	0,052	0,058	0,059	0,063	0,066	0,068	0,074	0,075	0,079	0,085
	175	0,013	0,019	0,026	0,033	0,040	0,042	0,047	0,048	0,054	0,058	0,064	0,071	0,072	0,078	0,082	0,084	0,091	0,092	0,098	0,104
	180	0,014	0,019	0,027	0,034	0,041	0,043	0,048	0,049	0,056	0,060	0,067	0,074	0,075	0,081	0,085	0,087	0,094	0,096	0,101	0,108
	200	0,016	0,022	0,030	0,039	0,047	0,049	0,055	0,056	0,063	0,067	0,074	0,082	0,084	0,090	0,095	0,098	0,105	0,107	0,113	0,121
	250	-	0,029	0,040	0,050	0,061	0,064	0,072	0,073	0,083	0,088	0,099	0,109	0,111	0,119	0,125	0,129	0,140	0,142	0,150	0,160
	300	-	0,036	0,049	0,062	0,075	0,079	0,089	0,090	0,102	0,110	0,123	0,135	0,138	0,148	0,156	0,161	0,174	0,176	0,186	0,199
Ē	315	-	-	0,052	0,066	0,080	0,084	0,094	0,095	0,108	0,116	0,130	0,143	0,146	0,157	0,165	0,170	0,184	0,187	0,197	0,211
H (mm)	350	- 1	-	0,058	0,074	0,090	0,094	0,105	0,107	0,121	0,132	0,147	0,162	0,165	0,177	0,186	0,193	0,208	0,211	0,223	0,238
	355	-	_	0,059	0,075	0,091	0,096	0,107	0,109	0,123	0,134	0,149	0,165	0,168	0,180	0,190	0,196	0,211	0,214	0,227	0,242
	400	-	-	-	0,086	0,104	0,109	0,122	0,124	0,140	0,153	0,171	0,189	0,192	0,206	0,217	0,224	0,242	0,245	0,260	0,277
	450	-/	-	-	0,094	0,114	0,120	0,134	0,136	0,154	0,175	0,195	0,215	0,219	0,235	0,248	0,256	0,276	0,280	0,296	0,316
	500	-	-	-	0,105	0,128	0,135	0,151	0,153	0,174	0,196	0,219	0,242	0,246	0,265	0,278	0,287	0,310	0,315	0,333	0,356
	550	-	-	-	4	0,142	0,15	0,167	0,170	0,193	0,218	0,243	0,268	0,273	0,294	0,309	0,319	0,344	0,349	0,369	0,395
	560	-	-	-	-	0,145	0,153	0,171	0,173	0,197	0,222	0,248	0,274	0,279	0,300	0,315	0,325	0,351	0,356	0,377	0,403
	600	-	-	-	2	0,156	0,165	0,184	0,187	0,212	0,240	0,267	0,295	0,301	0,323	0,339	0,351	0,378	0,384	0,406	0,434

Dimensions & Weights

Dimensions

To avoid blocking the movement of a damper blade, connect a straight duct at minimal lengths respectively R1 or R2. R1 and R2 are the overhang of the fully open blade, including seals and gaskets on the damper blade.

NOTES

'* For nominal size W = 100 mm the internal width dimension is 100 mm, flange outside width dimension 152 mm and/or for nominal size H = 100 mm the internal height dimension is 100 mm, flange outside height dimension 152 mm.

FDS-3G-KS

	H (mm)															
	100	150	175	180	200	250	300	315	350	355	400	450	500	550	560	600
R1 (mm)	-188	-163	-150	-148	-143	-118	-93	-85	-68	-65	-43	-18	7	32	37	57
R2 (mm)	-43	-18	-5	-3	2	27	52	60	77	80	102	127	152	177	182	202

Dimensions & Weights

Weights

m	1										W (nm)									
(kg	±10%)	100	150	200	250	300	315	350	355	400	450	500	550	560	600	630	650	700	710	750	800
	100	7,1	7,9	8,8	9,6	10,5	10,8	11,4	11,5	12,3	13,2	14,0	14,9	15,1	15,8	16,3	16,5	17,6	17,8	18,4	19,3
		9,1	9,9	10,8	11,6	12,5	12,8	13,4	13,5	14,3	15,2	16,0	16,9	17,1	17,8	18,3	18,5	19,6	19,8	20,4	21,3
	150	7,9	8,8	9,7	10,7	11,7	11,9	12,6	12,7	13,5	14,5	15,4	16,3	16,5	17,4	17,9	18,1	19,2	19,4	20,1	21,0
		9,9	10,8	11,7	12,7	13,7	13,9	14,6	14,7	15,5	16,5	17,4	18,3	18,5	19,4	19,9	20,1	21,2	21,4	22,1	23,0
	200	8,8	9,8	10,7	11,8	12,8	13,1	13,8	13,9	14,8	15,8	16,8	17,9	18,0	18,9	19,4	19,6	20,9	21,1	21,8	22,8
	200	10,8	11,8	12,7	13,8	14,8	15,1	15,8	15,9	16,8	17,8	18,8	20,9	20,0	20,9	21,4	21,6	22,9	24,1	24,8	24,8
	250	-	11,7	11,8	12,9	13,9	14,2	15,0	15,2	16,0	17,2	18,3	19,4	19,6	20,4	21,0	21,2	22,5	22,7	23,6	24,7
	250	-	13,7	13,8	14,9	15,9	16,2	17,0	17,2	18,0	19,2	20,3	21,4	21,6	22,4	23,0	23,2	24,5	24,7	25,6	26,7
	300	-	-	12,8	13,9	15,0	15,4	16,2	16,4	17,3	18,6	19,7	20,8	21,0	21,9	22,6	22,7	24,1	24,4	25,4	26,5
		-	-	14,8	15,9	17,0	17,4	18,2	18,4	19,3	20,6	21,7	22,8	23,0	23,9	24,6	24,7	26,1	26,4	27,4	28,5
	315	-	-	13,1	14,2	15,4	15,8	16,6	16,7	17,7	18,9	20,1	21,2	21,5	22,3	23,1	23,3	24,7	24,9	25,9	27,0
		-	-	15,1	16,2	17,4	17,8	18,6	18,7	19,7	20,9	22,1	23,2	23,5	24,3	25,1	25,3	26,7	26,9	27,9	29,0
	350	-	-	13,8	15,0	16,2	16,6	17,3	17,5	18,6	19,9	21,1	22,2	22,5	23,4	24,2	24,3	25,9	26,0	27,1	28,3
(mm)		-	-	15,8	17,0	18,2	18,6	19,3	19,5	20,6	21,9	23,1	24,2	24,5	25,4	26,2	26,3	27,9	28,0	29,1	30,3
Ĭ	355	-	-	13,9	15,2	16,4	16,7	17,5	17,6	18,7	20,0	21,2	22,4	22,6	23,6	24,3	24,5	26,0	26,3	27,2	28,4
		-	-	15,9	17,2	18,4	18,7	19,5	19,6	20,7	22,0	23,2	24,4	24,6	25,6	26,3	26,5	28,0	28,3	29,2	30,4
	400	-	-	14,8	16,0	17,3	17,7	18,6	18,7	19,9	21,2	22,4	23,7	24,0	24,9	25,7	25,9	27,5	27,8	28,8	30,0
		-	-	16,8	18,0	19,3	19,7	20,6	20,7	21,9	23,2	24,4	25,7	26,0	26,9	27,7	27,9	29,5	29,8	30,8	32,0
	450	-	-	-	1000000	Name of Street	Name of Street	10000000		10000000			No. of Concession, Name of Street, or other Designation, Name of Street, or other Designation, Name of Street, Original Property and Name of Stree	DATE OF THE PARTY OF				1000000	-		0.000
		-	-	-	19,1	20,5	20,9	21,8	21,9	23,1	24,5	25,8	27,1	27,4	28,5	29,3	29,5	31,2	31,5	32,5	33,8
	500	-	-	-	18,2	19,6	20,0	21,0	21,1	22,4	23,8	25,2	26,7	26,9	28,1	28,8	29,0	30,8	31,1	32,2	33,6
		-	-	-	20,2	21,6	22,2	23,0	23,1	24,4	25,8	27,2	-	-	_	-		-			-
	550	-	-	-	-			1000000	22,4												
		•	•	•	-			_	24,4												
	560	-	-	-	-									-				-	-		-
		•	•	•	-			-	24,5												
	600	-	-	-	-			100000000					The state of the s		,6 22,4 23,0 23,2 24,5 24,7 ,0 21,9 22,6 22,7 24,1 24,4 ,0 23,9 24,6 24,7 26,1 26,4 ,5 22,3 23,1 23,3 24,7 24,9 ,5 24,3 25,1 25,3 26,7 26,9 ,5 23,4 24,2 24,3 25,9 26,0 ,6 23,6 24,3 24,5 26,0 26,3 ,6 23,6 24,3 24,5 26,0 26,3 ,6 25,6 26,3 24,5 28,0 28,3 ,6 25,6 26,3 26,5 28,0 28,3 ,0 24,9 25,7 25,9 27,5 27,8 ,4 26,5 27,3 27,5 29,2 29,5 ,4 28,5 29,3 29,5 31,2 31,1 ,9 30,1 30,8 31,0	-					
		-	-	-	-	23,8	24,3	25,3	25,6	26,9	28,5	30,1	31,6	31,9	33,1	34,0	34,1	36,1	37,4	37,7	39,2

FDS-3GKS (H)
FDS-3GKS (B)

Ordering Code

A-Damper type

3G

W - Width Dimension

from 100 mm up to 800 mm

H - Height Dimension

from 100 mm up to 600 mm

B - Type of Activation (H0 up to B24T-SR)

H0-KS (Manual crank, no switches)

H2-KS (Manual crank, 2 switches 230V AC or 24V AC/DC)

H5-2-KS (Manual crank, 24V AC/DC electromagnet, 2 switches 230V AC or 24V AC/DC)

H6-2-KS (Manual crank, 230V AC electromagnet, 2 switches 230V AC or 24V AC/DC)

B230T-KS (230V AC Belimo Actuator)

B24T-KS (24V AC/DC Belimo Actuator)

BST0-KS (230V AC Supply comm.unit & 24V AC/DC Belimo Actuator)

B24T-W-KS (24V AC/DC Belimo Actuator & Wire connector for comm.unit)

B24T-SR-KS (24V AC/DC Belimo Actuator, modulated 0..10 V), Only for dimensions ≥160 mm

Ordering Code

Example of the Rectangular Fire Dampers Ordering Code

FDS-3G-KS

FDS-3G-800x600-H2-KS Rectangular fire damper with Kit, nominal dimensions width \times height = 800 \times 600 mm, with open and closed position indication with 230 V contact microswitches.

Inspection opening possitions

Removable mechanism is available for all sizes.

W and H < 200

No inspection openning. Inspection possible through removable mechanism or additional inspection opening must be added to the conecting duct.

W and H ≥ 200

Standardardly in position: BR

H ≥ 250

Legend

- 4. Kit Kit Installation, using an Installation Kit
- a) Flexible (plasterboard) wall
- **b)** Concrete/masonry/cellular concrete (rigid) wall

Ve - Vertical wall

Installation, Maintenance & Operation

Some damper parts may have sharp edges – therefore to protect yourself from harm, please use gloves during damper installation and manipulation. In order to prevent electric shock, fire or any other damage which could result from incorrect damper usage and operation, it is important to:

- 1. Ensure that installation is performed by a trained person.
- 2. Follow the written and depicted instructions provided within Handbook closely.
- 3. Perform damper inspection in accordance with Handbook.
- 4. Check the damper's functionality as per the chapter "Fire Damper Functionality Check" before you install the fire damper. This procedure prevents the installation of a damper that has been damaged during transportation or handling. Information about installation, maintenance and operation can be found at www.koolair.com.

Installation rules

- The duct connected to the fire damper must be supported or hung in such a way that the damper does not carry its weight. The damper must not support any part of the surrounding construction or wall which could cause damage and consequent damper failure. It is recommended to connect the damper to a dilatation compensator on either end of the damper.
- The damper driving mechanism can be placed on either side of the wall, however it needs to be placed so as to ensure easy access during inspection.
- The distance between the fire damper bodies is defined by the Kit base plate. Smallest distance between two dampers with kit is when the Kit base plates are touching.
- The distance between the wall/ceiling is defined by the Kit base plate. Smallest distance between wall/ceiling and a damper with kit is when the Kit base plates is touching wall/ceiling.
- The fire damper must be installed into a fire partition structure in such a way that the damper blade in its closed position is located inside this structure. Kit base plate on the damper body represents a plane where supporting constructure begins.
- For each resistivity the minimum thickness of a its supporting construction cannot be decreased as per EN 1366-2 at least 200 mm from the installation opening.

IN ACCORDANCE WITH EN 15650, EACH FIRE DAMPER MUST BE INSTALLED ACCORDING TO THE INSTALLATION INSTRUCTIONS PROVIDED BY THE MANUFACTURER!

Installation Using an Installation Kit

IMPORTANT: The installation kit can not be delivered separately! The installation kit is delivered pre-mounted on a damper.

- 1. The supporting construction opening must be prepared as depicted. Opening surfaces must be even and cleaned off.
- 2. The opening dimensions are driven by the nominal dimensions of the damper with added clearance. For rectangular dampers, the opening will have dimensions of W1 × H1.
- 3. The flexible wall opening must be reinforced as per the standards for plasterboard walls. Additionally opening in the flexible wall must be reinforced as per the standards for plasterboard walls and the perimeter of its interior must be lined with a double layer of 12,5 mm thick plasterboard (see detail).
- 4. This is the simplest installation method. Insert the damper into the opening and fix the Kit base plate using appropriate screws (recommended screw diameter 5,5 e.g. DIN7981) into pre-drilled holes.
- 5. If needed, uncover and clean the damper after installation.
- 6. Check the damper's functionality.

Installation Standard Distances

The distances are defined by the kit base plate. Minimum distances are when kit base plate is touching ceiling or side wall. This means from the wall or ceiling to the duct axis it is (W+230)/2 or (H+230)/2. For multiple crossings through a fire resistive wall the minimum distance between two duct axes is Wp, this means the Kit base plates are touching. This Kit base plate also serves as a distance limiter for nearby foreign objects crossing the fire resistive wall.

Installation into a Wall thinner than tested

Installation into a thinner wall is allowed under the condition that an additional layer/layers of fire protective board are fixed to the surface of the wall in order to achieve the same length of damper penetration seal as was tested. The minimum width of added boards around the damper is 200 mm. In addition, the alternative thinner wall should be classified in accordance with EN 13501-2:2007 + A1: 2009 for fire resistance required for product application. For a protruding wall, the additional layers must be fixed on the steel supporting construction of the wall.

 $(W + 230) \times (H + 230)$

Legend

- **F1** Screw ≥ 5,5 DIN7981 or suitable wall plug and screw size 6.
- 1 Fire damper with KIT (factory fitted)
- 2 Kit base plate fixed directly onto the wall
- 3 Concrete/masonry/cellular concrete wall or ceiling
- 4 Flexible (plasterboard) wall
- 4a 2 layers of plasterboard fireproof plate type F, EN 520
- 4b Vertical CW profiles
- 4c Horizontal CW profiles
- **4d** Mineral wool; thickness/cubic density see picture.

Notes

- a) Flexible (plasterboard) wall
- b) Concrete/masonry/cellular concrete (rigid) wall
- Ve Vertical wall

Type of activation H2-KS

IMPORTANT: Danger of electric shock!

Switch off the power supply before working on any electrical equipment.

Allow only qualified electricians to work on the electrical system.

Microswitch: Power Supply: AC 125/250 V or DC 12/24 V

Electric Parameters: 3A

NOTES:

· Supply via safety isolation transformer!

24 V AC/DC or 230 V AC

- 1 Grey cable colour
- 2 Orange cable colour
- 3 Pink cable colour
- 4 White cable colour
- 5 Red cable colour
- 6 Brown cable colour (Do not use for type of activation H2)
- X:7 Blue cable colour (Do not use for type of activation H2)

Type of activation H5-2-KS

IMPORTANT: Danger of electric shock!

Switch off the power supply before working on any electrical equipment.

Allow only qualified electricians to work on the electrical system.

Microswitch:

Power Supply: AC 125/250 V or DC 12/24 V

Electric Parameters: 3A Impulse Electromagnet:

Power Supply: AC (50/60 Hz)/DC 24 V

Electric Parameters: 50 VA, load factor 10% (maximum 30 seconds in operation)

NOTES:

- 50 VA = Nominal activation power, maximum permissible magnet load = 300 VA
- · Supply via safety isolation transformer.
- Power consumption must be monitored!

- 1 Grey cable colour
- 2 Orange cable colour
- 3 Pink cable colour
- 4 White cable colour
- 5 Red cable colour
- 6 Brown cable colour
- X:7 Blue cable colour

Type of activation H6-2-KS

IMPORTANT: Danger of electric shock!

Switch off the power supply before working on any electrical equipment.

Allow only qualified electricians to work on the electrical system.

Microswitch:

Power Supply: AC 125/250 V or DC 12/24 V

Electric Parameters: 3A Impulse Electromagnet:

Power Supply: AC 230 V, 50/60 Hz

Electric Parameters: 50 VA, load factor 10% (maximum 30 seconds in operation)

NOTES:

- 50 VA = Nominal activation power, maximum permissible magnet load = 300 VA
- · Caution! Main power supply voltage!
- A device that disconnects the pole conductors (minimum contact gap 3 mm) is required for isolation from the power supply.
- Power consumption must be monitored!

- 1 Grey cable colour
- 2 Orange cable colour
- 3 Pink cable colour
- 4 White cable colour
- 5 Red cable colour
- 6 Brown cable colour
- X:7 Blue cable colour

Type of activation B230T-KS

IMPORTANT: Danger of electric shock!

Switch off the power supply before working on any electrical equipment.

Allow only qualified electricians to work on the electrical system.

Actuator power supply: AC 230 V, 50/60 Hz

NOTES:

- · Caution! Main power supply voltage!
- A device that disconnects the pole conductors (minimum contact gap 3 mm) is required for isolation from the power supply.
- Parallel connection of several actuators possible.
- Power consumption must be monitored!

- 1 Blue cable colour
- 2 Brown cable colour
- S1 Violet cable colour
- \$2 Red cable colour
- \$3 White cable colour
- \$4 Orange cable colour
- S5 Pink cable colour
- S6 Grey cable colour
- Tf Thermal fuse

Type of activation B24T-KS

IMPORTANT: Danger of electric shock!

Switch off the power supply before working on any electrical equipment.

Allow only qualified electricians to work on the electrical system.

Actuator power supply: AC (50/60 Hz)/DC 24 V

NOTES:

- Supply via safety isolation transformer.
- Parallel connection of several actuators possible.
- Power consumption must be monitored!

- **1** Blue cable colour (black for BF24-T)
- 2 Red cable colour (white for BF24-T)
- \$1 Violet cable colour (white for BF24-T)
- **S2** Red cable colour (white for BF24-T)
- \$3 White cable colour (white for BF24-T)
- **S4** Orange cable colour (white for BF24-T)
- **\$5** Pink cable colour (white for BF24-T)
- **S6** Grey cable colour (white for BF24-T)
- Tf Thermal fuse

Type of activation B24T-W-KS

IMPORTANT: Danger of electric shock!

Switch off the power supply before working on any electrical equipment.

Allow only qualified electricians to work on the electrical system.

This type of activation is with provided cable connectors for the supply and communication unit (communication unit not part of the mechanism).

Actuator power supply: AC (50/60 Hz)/DC 24 V

NOTES:

- · Supply via safety isolation transformer.
- Parallel connection of several actuators possible.
- Power consumption must be monitored!

- 1 Blue cable colour (black for BF24-T) in connector 1
- 2 Brown cable colour (white for BF24-T) in connector 1
- \$1 Violet cable colour (white for BF24-T) in connector 2
- S2 Red cable colour (white for BF24-T) in connector 2
- \$3 White cable colour (white for BF24-T) in connector 2
- **S4** Orange cable colour (white for BF24-T) in connector 2
- \$5 Pink cable colour (white for BF24-T) in connector 2
- S6 Grey cable colour (white for BF24-T) in connector 2
- Tf Thermal fuse

Operation Manual

Warning

To avoid injury, make sure to wear gloves and keep the blades movement area clear while manipulating with the damper. NEVER OPEN THE INSPECTION LID WHEN THERE IS AIR FLOWING IN THE DUCT CONNECTED TO THE FIRE DAMPER!

Fire Damper Functionality Check

Manually Operated Activation Mechanism

- 1. Open the damper turn the red crank (P10) using a hexagon bent wrench No. 10 (P13). Turn the red crank so that the indicator arrow is pointing to the "OPEN" position (P11), the red crank needs to remain in the "OPEN" position, and the microswitch for the open position indication must be pushed (if installed).
- 2. Close the damper release the mechanism by pressing the red release button (P9), the red crank will adjust its indicator arrow pointing to the "CLOSED" position (P12) and remain locked in this position, the microswitch for the closed position indication must be pushed (if installed).
- 3. Open the damper turn the red crank (P10) using a hexagon bent wrench No. 10. (P13) Turn the red crank so that the indicator arrow is pointing to the "OPEN" position, the red crank needs to remain in the "OPEN" position, and the microswitch for the open position indication must be pushed (if installed).

Spring Return Actuator Operated Activation Mechanism

- 1. The fire damper must open automatically after the actuator circuit closes the arrow on the actuator axis must show the position 90° .
- 2. Press the control switch (P9) on the Thermoelectric fuse and hold it until the fire damper is fully closed the arrow on the actuator axis must show the position 0°.
- 3. Release the control switch on the Thermoelectric fuse. The fire damper must become fully open the arrow on the actuator axis must show the position 90° which is the operating position.

Operation Manual

After installation, it is necessary to adjust the damper into its operating position – open the fire damper.

Spring Return Actuator Operated Activation Mechanism

Connect the electric driving mechanism to the relevant electric power supply (see Electrical connection section). The electromotor is activated and adjusts the damper into its open position.

Manually Operated Activation Mechanism

Turn the red crank into the "OPEN" position. The damper blade must remain in open position.

Operation Manual

Damper Inspection

The activation mechanism keeps the dampers on stand-by during their entire life cycle in accordance with this manual issued by the manufacturer. It is not permitted to alter the dampers in any way nor perform any changes to their structure without the manufacturer's consent. The operator performs regular checks of the dampers as per established regulations and standards at least once every 12 months. The check needs to be performed by an employee who has been specifically trained for this purpose.

The current fire damper condition determined during the inspection needs to be entered into the operating logbook along with the date of the inspection, the legible name, surname and signature of the employee who performed the inspection. The Operating Journal includes a copy of the employee's authorization. If any discrepancies are discovered, these need to be entered in the Operating Journal along with a proposal for their removal. The Operating Journal can be found in product documents section. Immediately after the installation and activation of the damper, it needs to be checked under the identical conditions as apply to the above mentioned 12-month inspections. The visual check ensures that visible damages on the inspected damper parts are seen. On its external side, the damper housing and the activation mechanism are checked.

Due to the need to perform a visual check of the damper's internal parts, open the inspection lid. For small sizes there is the possibility of removing the mechanism to perform the inspection. The removable mechanism always needs to be returned back into the damper with the damper blade being closed. The damper's internal casing, thermal fuse, sealings, foaming substance, the damper blade condition and accuracy of its closure during its leaning against the backstop in the closed position must all be checked. There must not be any strange objects or a layer of impurities from the air distribution systems inside the damper.

Recommended Inspection Steps According to the EN 15 650:

- 1. Damper identification
- 2. Date of inspection
- 3. Inspecting electric connection of the activation mechanism (where applicable)
- 4. Inspecting damper for cleanliness and possible need for cleaning (where needed)
- 5. Inspecting blade and sealing condition, possible correction and logging (where needed)
- 6. Inspecting proper fire damper closure
- 7. Inspecting damper functionality opening and closing using the control system, physical examination of the damper's behavior, possible correction and logging (where needed)
- 8. Inspecting end switches' functionality in the open and closed position, possible correction and logging (where needed)
- 9. Inspect whether the damper is fulfilling its role as part of the regulation system (where needed)
- 10. Inspect whether the damper remains in its standard operating position.
- 11. The damper is usually part of a system. In that case the whole system needs to be checked as described in its operation and requirements published by the builder of the system.

THIS CATALOG IS INTELLECTUAL PROPERTY.

The partial or total reproduction of its contents is forbidden without the express and reliable authorisation of KOOLAIR, S.L.

CEN-FDS-3G-0723-00

KOOLAIR, S.L.

Calle Urano, 26 Poligono industrial nº 2 – La Fuensanta 28936 Móstoles - Madrid - (Spain)

Tel: +34 91 645 00 33 Fax: +34 91 645 69 62 e-mail: info@koolair.com

www.koolair.com