

série

Grelhas de segurança

www.koolair.com

ÍNDICE

Descrição	2
Modelos e dimensões KSG-1	3
Quadros de selecção KSG-1	5
Modelos e dimensões KSG-3	7
Quadros de selecção KSG-3	8

Grelhas de segurança tipo KSG

Descrição

A gama Koolair de grelhas de segurança foi concebida para cobrir as necessidades e exigências do sistema penitenciário e as zonas onde são necessárias grelhas com elevado grau de robustez. Podem ser utilizadas tanto para insuflação como para retorno de ar.

Construção

As grelhas de alta segurança são fabricadas em chapa de aço de 3 mm de espessura ou em aço inoxidável de 2 mm; disponíveis com comporta de regulação acessível a partir da parte posterior. Pleno com ligações circulares em disposição lateral e superior. Disponibilidade em cores RAL e em aço inoxidável fosco gravado matt.

Dimensões

Os quadros de selecção reúnem as dimensões padrão disponíveis; a pedido, são executados tamanhos especiais.

Acabamentos

Grelhas de aço inoxidável Grau 304, acabamento gravado matt; as grelhas de chapa de aço recebem um processo de passivação antes da cobertura em pó de qualquer cor RAL.

CODIFICAÇÃO

KSG Grelha de Segurança

Nível de segurança 1 Alta Segurança: (MJ, HO)
3 Média Segurança

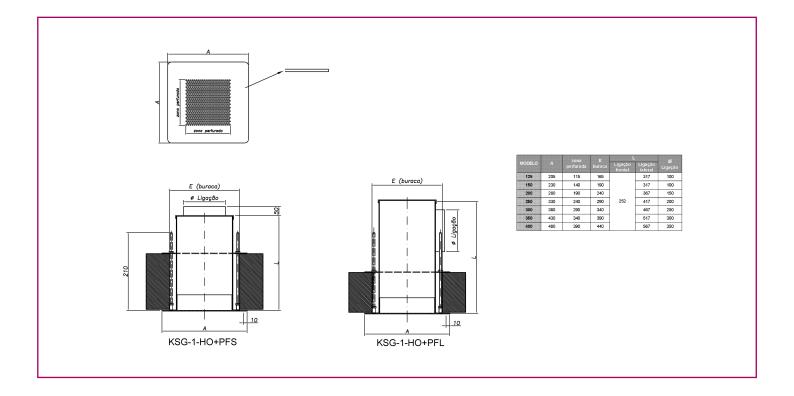
Material - CH Chapa de aço
- Inox Aço inoxidável

A x A Dimensão nominal (em mm)

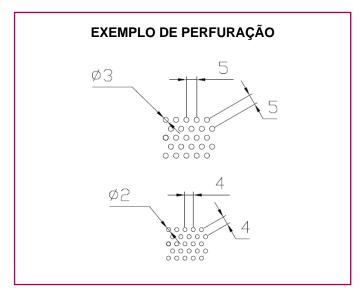
Plenum - PL Bocal lateral - PS Bocal superior

Opções O (comporta de regulação) FD (grelhas intumescentes)

Acabamento RAL (gama de cor)

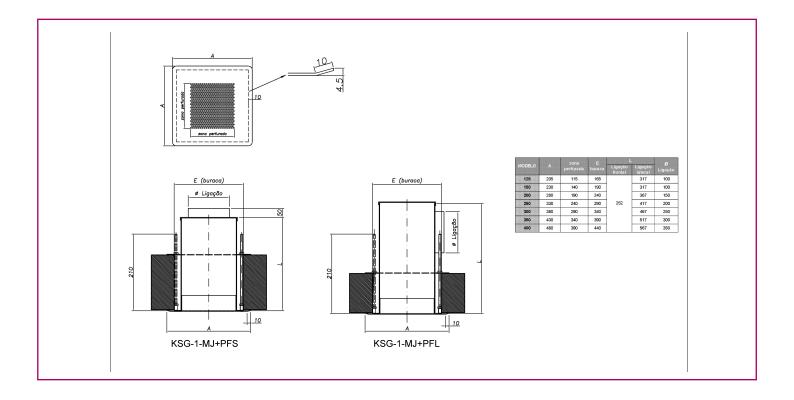

Exemplo: KSG-1 / CH / 250 x 250 / PS / RAL 9010

Grelha de alta segurança em chapa de aço de 250 x 250 com pleno e bocal superior pintado em RAL 9010.

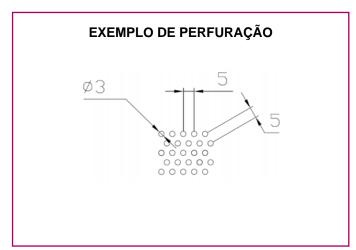


Grelhas de alta segurança tipo KSG-1 - HO

O nível 1 de grelhas de segurança são grelhas anti-vandalismo, concebidas para aplicações de segurança máxima (celas de detenção policial) que estão disponíveis com plenos de ligação superior ou lateral. Tanto as comportas de regulação como as grelhas intumescentes podem ser instaladas no conjunto grelha + pleno. A espessura da parede deve ser indicada antes de realizar o pedido.


A pedido, podem ser definidos diferentes desenhos de perfuração.

Grelhas de alta segurança tipo KSG-1 - MJ


O nível 1 de grelhas de segurança são grelhas anti-vandalismo, concebidas para aplicações de segurança máxima (de prisão) que estão disponíveis com plenos de ligação superior ou lateral. Tanto as comportas de regulação como as grelhas intumescentes podem ser instaladas no conjunto grelha + pleno. A espessura da parede deve ser indicada antes de realizar o pedido.

Material:

Chapa de aço 3 mm espessura

Perfuração:
Ø3 mm - 6 mm passo
Ø3 mm - 5 mm passo

		KSG-1 -	- ALTA SE	GURANÇA	– PLENO	BOCAL LA	TERAL		
[m ³ /h]	[I/s]	Tamanho	125x125	150x150	200x200	250x250	300x300	350x350	400x400
30	8,3	V _f [m/s] X [m] Ps [Pa] dB(A)	0,5 0,9 3 <20						
45	12,5	V _f [m/s] X [m] Ps [Pa] dB(A)	0,8 1,4 7 <20	0,6 1,2 4 <20					
60	16,7	V _f [m/s] X [m] Ps [Pa] dB(A)	1,1 1,9 13 <20	0,7 1,6 6 <20					
75	20,8	V _f [m/s] X [m] Ps [Pa] dB(A)	1,3 2,4 20 <20	0,9 2,0 10 <20	0,5 1,5 3 <20				
100	27,8	V _f [m/s] X [m] Ps [Pa] dB(A)	1,8 3,2 35 28	1,2 2,6 17 <20	0,7 2,0 6 <20				
150	41,7	V _f [m/s] X [m] Ps [Pa] dB(A)	2,7 4,7 79 40	1,9 3,9 39 31	1,0 3,0 13 <20	0,7 2,4 6 <20	0,5 2,0 3 <20		
200	55,6	V _f [m/s] X [m] Ps [Pa] dB(A)	3,6 6,3 140 49	2,5 5,3 69 40	1,4 3,9 23 26	0,9 3,2 10 <20	0,6 2,6 5 <20	0,5 2,3 3 <20	
250	69,4	V _f [m/s] X [m] Ps [Pa] dB(A)		3,1 6,6 108 47	1,7 4,9 36 32	1,1 3,9 16 21	0,8 3,3 8 <20	0,6 2,8 4 <20	
300	83,3	V _f [m/s] X [m] Ps [Pa] dB(A)			2,1 5,9 52 38	1,3 4,7 23 27	0,9 3,9 11 <20	0,7 3,4 6 <20	0,5 3,0 3 <20
350	97,2	V _f [m/s] X [m] Ps [Pa] dB(A)			2,4 6,9 71 42	1,6 5,5 31 31	1,1 4,6 15 22	0,8 3,9 8 <20	0,6 3,5 5 <20
400	111,1	V _f [m/s] X [m] Ps [Pa] dB(A)			2,8 7,9 93 46	1,8 6,3 41 35	1,2 5,3 20 26	0,9 4,5 11 <20	0,7 3,9 6 <20
500	138,9	V _f [m/s] X [m] Ps [Pa] dB(A)				2,2 7,9 64 42	1,5 6,6 31 33	1,1 5,6 17 25	0,9 4,9 10 <20
600	166,7	V _f [m/s] X [m] Ps [Pa] dB(A)				2,7 9,5 92 48	1,9 7,9 44 39	1,4 6,8 24 31	1,0 5,9 14 24
700	194,4	V _f [m/s] X [m] Ps [Pa] dB(A)					2,2 9,2 60 43	1,6 7,9 32 36	1,2 6,9 19 29
800	222,2	V _f [m/s] X [m] Ps [Pa] dB(A)					2,5 10,5 78 47	1,8 9,0 42 40	1,4 7,9 25 33
900	250,0	V _f [m/s] X [m] Ps [Pa] dB(A)						2,0 10,1 54 43	1,6 8,9 31 36
1000	277,8	V _f [m/s] X [m] Ps [Pa] dB(A)						2,3 11,3 66 46	1,7 9,9 39 40
1250	347,2	V _f [m/s] X [m] Ps [Pa] dB(A)							2,2 12,3 61 46

Legenda

 $\begin{matrix} V_f \\ X \end{matrix}$ Velocidade frontal (m/s)

Alcance (m)

Pressão estática (Pa) dB(A) Nível de potência sonora

Factores de correcção para retorno ou extracção do ar:

 $L_{wA} [dB(A)] = dB(A) (quadro) + 6$ $P_s = P_s$ (quadro) x 1,5

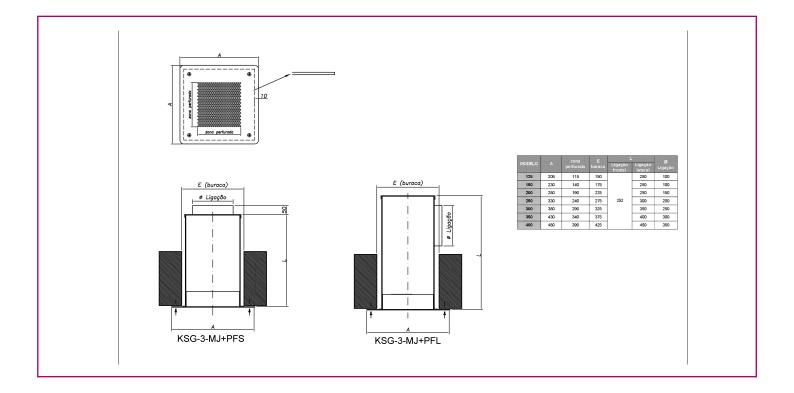
		KSG-1 -	ALTA SEC	BURANÇA	- PLENO E	BOCAL SU	JPERIOR		
[m ³ /h]	[I/s]	Tamanho	125x125	150x150	200x200	250x250	300x300	350x350	400x400
[7]	[1/5]	V _f [m/s]	0,5						
30	8,3	X [m] Ps [Pa]	0,9 2						
		dB(A)	<20	0.0					
45	40.5	V _f [m/s] X [m]	0,8 1,4	0,6 1,2					
45	12,5	Ps [Pa] dB(A)	5 <20	3 <20					
		V _f [m/s]	1,1	0,7					
60	16,7	X [m] Ps [Pa]	1,9 9	1,6 5					
		dB(A)	<20	<20	0.5				
75	20.0	V _f [m/s] X [m]	1,3 2,4	0,9 2,0	0,5 1,5				
75	20,8	Ps [Pa] dB(A)	14 <20	7 <20	2 <20				
		V _f [m/s]	1,8	1,2	0,7				
100	27,8	X [m] Ps [Pa]	3,2 26	2,6 13	2,0 4				
		dB(A)	<20	<20	<20	0.7	0.5		
150	41,7	V _f [m/s] X [m]	2,7 4,7	1,9 3,9	1,0 3,0	0,7 2,4	0,5 2,0		
130	41,7	Ps [Pa] dB(A)	58 32	28 23	10 <20	4 <20	2 <20		
		V _f [m/s]	3,6	2,5	1,4	0,9	0,6	0,5	
200	55,6	X [m] Ps [Pa]	6,3 102	5,3 51	3,9 17	3,2 7	2,6 4	2,3 2	
		dB(A) V _f [m/s]	41 4,4	32 3,1	<20 1,7	<20 1,1	<20 0,8	<20 0,6	
250	69,4	X [m]	7,9	6,6	4,9	3,9	3,3	2,8	
250	03,4	Ps [Pa] dB(A)	160 47	79 38	26 24	12 <20	6 <20	3 <20	
		V _f [m/s]		3,7	2,1	1,3	0,9	0,7	0,5
300	83,3	X [m] Ps [Pa]		7,9 114	5,9 38	4,7 17	3,9 8	3,4 4	3,0 3
		dB(A) V _f [m/s]		44	29 2,8	<20 1,8	<20 1,2	<20 0,9	<20 0,7
400	111,1	X [m]			7,9	6,3	5,3	4,5	3,9
		Ps [Pa] dB(A)			68 38	30 27	14 <20	8 <20	5 <20
		V _f [m/s] X [m]			3,5 9,9	2,2 7,9	1,5 6,6	1,1 5,6	0,9 4,9
500	138,9	Ps [Pa]			106	46	22	12	7
		dB(A) V _f [m/s]			45 4,2	34 2,7	25 1,9	<20 1,4	<20 1,0
600	166,7	X [m] Ps [Pa]			11,8 152	9,5 67	7,9 32	6,8 17	5,9 10
	•	dB(A)			50	39	30	23	<20
		V _f [m/s] X [m]				3,1 11,0	2,2 9,2	1,6 7,9	1,2 6,9
700	194,4	Ps [Pa]				91	44	24	14
		dB(A) V _f [m/s]				3,6	35 2,5	27 1,8	21 1,4
800	222,2	X [m] Ps [Pa]				12,6 119	10,5 57	9,0 31	7,9 18
		dB(A)				48	39	31	25
	a	V _f [m/s] X [m]					2,8 11,8	2,0 10,1	1,6 8,9
900	250,0	Ps [Pa]					73	39	23
		dB(A) V _f [m/s]					42 3,1	35 2,3	28 1,7
1000	277,8	X [m] Ps [Pa]					13,1 90	11,3 48	9,9 28
		dB(A)					45	38	31
4500	1107	V _f [m/s] X [m]							2,6 14,8
1500	416,7	Ps [Pa] dB(A)							64 43
		ub(A)							40

Legenda

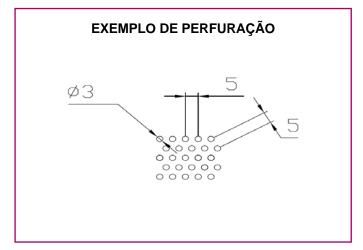
Velocidade frontal (m/s)

Χ Alcance (m)

Pressão estática (Pa) dB(A) Nível de potência sonora


Factores de correcção para retorno ou extracção do ar:

 $L_{wA} [dB(A)] = dB(A) (quadro) + 6$ $P_s = P_s$ (quadro) x 1,5


Grelhas de segurança média tipo KSG-3

O nível 3 de grelhas de segurança são grelhas anti-vandalismo, concebidas para aplicações de segurança (áreas policiais, zonas de segurança hospitalar) que estão disponíveis com plenos de ligação superior ou lateral. Tanto as comportas de regulação como as grelhas intumescentes podem ser instaladas no conjunto grelha + pleno. A fixação é efectuada através de parafusos de segurança (não fornecidos) em orifícios recartilhados. A espessura da parede deve ser indicado antes de realizar o pedido.

A pedido, podem ser definidos diferentes desenhos de perfuração.

Material: Perfurações: Chapa de aço 3 mm espessura \longrightarrow Ø3 mm - 6 mm passo Ø3 mm - 5 mm passo

	KSG-3 – SEGURANÇA MEDIA - PLENO ENTRADA LATERAL								
[m ³ /h]	i e	Tamanho	125x125	150x150	200x200	250x250	300x300	350x350	400x400
[m /n]	[l/s]	V _f [m/s]	0,5						
30	8,3	X[m]	1,0						
	0,0	Ps [Pa] dB(A)	4 <20						
		V _f [m/s]	0,8	0,6					
45	12,5	X [m] Ps [Pa]	1,5 10	1,2 5					
		dB(A)	<20	<20					
		V _f [m/s] X [m]	1,1 2,0	0,7 1,6					
60	16,7	Ps [Pa]	17	8					
		dB(A) V _f [m/s]	<20 1,3	<20 0,9	0,5				
75	20,8	X [m]	2,5	2,1	1,5				
	20,0	Ps [Pa] dB(A)	27 24	13 <20	4 <20				
		V _f [m/s]	1,8	1,2	0,7				
100	27,8	X [m] Ps [Pa]	3,3 48	2,7 24	2,1 8				
		dB(A)	33	24	<20				
		V _f [m/s] X [m]	2,7 4,9	1,9 4,1	1,0 3,1	0,7 2,5	0,5 2,1		
150	41,7	Ps [Pa]	107	53	18	8	4		
		dB(A) V _f [m/s]	45	36 2,5	22 1,4	<20 0,9	<20 0,6	0,5	
200	55,6	X[m]		5,5	4,1	3,3	2,7	2,4	
200	33,0	Ps [Pa] dB(A)		94 44	32 30	14 <20	7 <20	4 <20	
		V _f [m/s]			1,7	1,1	0,8	0,6	
250	69,4	X [m] Ps [Pa]			5,1 49	4,1 22	3,4 10	2,9 6	
		dB(A)			37	26	<20	<20	
		V _f [m/s] X[m]			2,1 6,2	1,3 4,9	0,9 4,1	0,7 3,5	0,5 3,1
300	83,3	Ps [Pa]			71	31	15	8	5
		dB(A) V _f [m/s]			42 2,4	31 1,6	22 1,1	<20 0,8	<20 0,6
350	97,2	X [m]			7,2	5,8	4,8	4,1	3,6
330		Ps [Pa] dB(A)			97 47	42 36	20 27	11 <20	6 <20
		V _f [m/s]			2,8	1,8	1,2	0,9	0,7
400	111,1	X [m] Ps [Pa]			8,2 126	6,6 55	5,5 27	4,7 14	4,1 8
		dB(A)			51	40	31	23	<20
		V _f [m/s] X [m]				2,2 8,2	1,5 6,9	1,1 5,9	0,9 5,1
500	138,9	Ps [Pa]				86	42	23	13
		dB(A) V _f [m/s]				47 2,7	38 1,9	30 1,4	23 1,0
600	166,7	X[m]				9,9	8,2	7,1	6,2
	100,7	Ps [Pa] dB(A)				124 52	60 43	32 35	19 29
		V _f [m/s]					2,2	1,6	1,2
700	194,4	X [m] Ps [Pa]					9,6 82	8,2 44	7,2 26
		dB(A)					48	40	33
		V _f [m/s] X [m]					2,5 11,0	1,8 9,4	1,4 8,2
800	222,2	Ps [Pa]					107	58	34
-		dB(A) V _f [m/s]					52	44 2,0	37 1,6
900	250,0	X [m]						10,6	9,3
		Ps [Pa] dB(A)						73 48	43 41
		V _f [m/s]						2,3	1,7
1000	277,8	X [m] Ps [Pa]						11,8 90	10,3 53
		dB(A)						51	44
4050	0.47.0	V _f [m/s] X [m]							2,2 12,9
1250	347,2	Ps [Pa]							82
		dB(A)							51

Legenda

V_f Velocidade frontal (m/s)

X Alcance (m)

P_s Pressão estática (Pa)
dB(A) Nível de potência sonora

Factores de correcção para retorno ou extracção do ar:

 L_{wA} [dB(A)] = dB(A) (quadro) + 6 P_s = P_s (quadro) x 1,5

		KSG-3 – SI	EGURANÇ	A MÉDIA –	PLENO EN	NTRADA S	UPERIOR		
[m ³ /h]		Tamanho	125x125	150x150	200x200	250x250	300x300	350x350	400x400
[/]	[l/s]	V _f [m/s]	0,5						
30	8,3	X [m]	1,0						
	-,-	Ps [Pa] dB(A)	3 <20						
		V _f [m/s]	0,8	0,6					
45	12,5	X [m] Ps [Pa]	1,5 7	1,2 3					
		dB(A)	<20	<20					
		V _f [m/s] X [m]	1,1 2,0	0,7 1,6					
60	16,7	Ps [Pa]	13	6					
		dB(A)	<20	<20	0.5				
		V _f [m/s] X [m]	1,3 2,5	0,9 2,1	0,5 1,5				
75	20,8	Ps [Pa]	20	10	3				
		dB(A) V _f [m/s]	<20 1,8	<20 1,2	<20 0,7				
100	27.0	X [m]	3,3	2,7	2,1				
100	27,8	Ps [Pa]	35 24	17 <20	6 <20				
		dB(A) V _f [m/s]	2,7	1,9	1,0	0,7	0,5		
150	41,7	X [m]	4,9	4,1	3,1	2,5	2,1		
	,.	Ps [Pa] dB(A)	78 36	39 27	13 <20	6 <20	3 <20		
		V _f [m/s]	3,6	2,5	1,4	0,9	0,6	0,5	
200	55,6	X [m] Ps [Pa]	6,6 139	5,5 69	4,1 23	3,3 10	2,7 5	2,4 3	
		dB(A)	45	36	22	<20	<20	<20	
		V _f [m/s]		3,1	1,7	1,1	0,8	0,6	
250	69,4	X [m] Ps [Pa]		6,9 107	5,1 36	4,1 16	3,4 8	2,9 4	
		dB(A)		43	29	<20	<20	<20	
		V _f [m/s] X [m]		3,7 8,2	2,1 6,2	1,3 4,9	0,9 4,1	0,7 3,5	0,5 3,1
300	83,3	Ps [Pa]		155	52	23	11	6	3
		dB(A) V _f [m/s]		48	34 2,8	23 1,8	<20 1,2	<20 0,9	<20 0,7
400	1111	X [m]			8,2	6,6	5,5	4,7	4,1
400	111,1	Ps [Pa]			92 43	40 32	19 23	11 <20	6 <20
		dB(A) V _f [m/s]			3,5	2,2	1,5	1,1	0,9
500	138,9	X [m]			10,3	8,2	6,9	5,9	5,1
	,	Ps [Pa] dB(A)			144 49	63 38	30 29	16 22	10 <20
		V _f [m/s]				2,7	1,9	1,4	1,0
600	166,7	X [m] Ps [Pa]				9,9 91	8,2 44	7,1 24	6,2 14
		dB(A)				44	35	27	20
		V _f [m/s] X [m]				3,1 11,5	2,2 9,6	1,6 8,2	1,2 7,2
700	194,4	Ps [Pa]				124	60	32	19
		dB(A) V _f [m/s]				48	39	32	25
000	000.0	ν _f [Π/S] Χ [m]					2,5 11,0	1,8 9,4	1,4 8,2
800	222,2	Ps [Pa]					78	42	25
		dB(A) V _f [m/s]					43 2,8	36 2,0	29 1,6
900	250,0	X [m]					12,4	10,6	9,3
300	250,0	Ps [Pa] dB(A)					99 47	53 39	31 33
		$V_f[m/s]$						2,3	1,7
1000	277,8	X [m] Ps [Pa]						11,8 66	10,3 39
		dB(A)						42	39 36
		$V_f[m/s]$							2,6
1500	416,7	X [m] Ps [Pa]							15,4 87
		dB(A)							48

Legenda

 $\begin{matrix} V_f \\ X \end{matrix}$ Velocidade frontal (m/s)

Alcance (m)

Pressão estática (Pa) dB(A) Nível de potência sonora

Factores de correcção para retorno ou extracção do ar:

 $L_{wA} [dB(A)] = dB(A) (quadro) + 6$ $P_s = P_s$ (quadro) x 1,5

ESTE CATÁLOGO É PROPRIEDADE INTELECTUAL. Fica proibida a reprodução parcial ou total do seu conteúdo sem autorização expressa e formal da KOOLAIR, S.A.

KOOLAIR, S.A.

Calle Urano, 26 Poligono industrial nº 2 – La Fuensanta 28936 Móstoles - Madrid - (España)

Tel: +34 91 645 00 33 Fax: +34 91 645 69 62 e-mail: info@koolair.com