

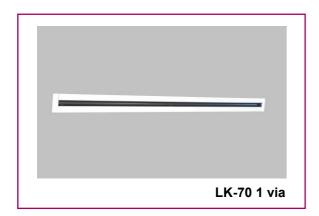
série

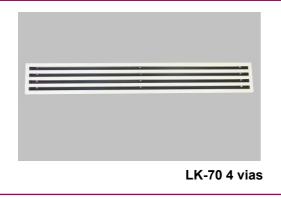
Difusores lineares

	AU VE
ISO 9001	
BUREAU VERITAS Certification	
Sistema de Gestió	n 1828

ÍNDICE

Codificação


Modelo LK-70 Introdução 2 Modelos e dimensões 3 Dados técnicos. Quadros de selecção 9 Dados técnicos. Gráficos de selecção 11 Exemplos de selecção 21 Codificação 23 Modelo LK-70-C Introdução 24 Modelos e dimensões 25 Dados técnicos. Quadros de selecção 28 Dados técnicos. Gráficos de selecção


29

30

Difusor linear LK-70

Ensaio em Laboratório I+D+i da **KOOLAIR LK-70-MULTI-1 via**

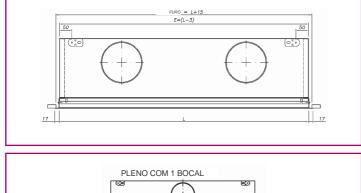
Descrição

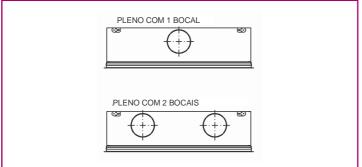
Difusor linear de insuflação LK-70, para caudal variável ou constante, especialmente concebido para manter o efeito tecto, (efeito Coanda) mesmo com caudais de ar primário reduzidos a 20% do caudal nominal.

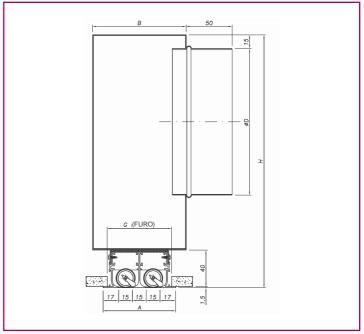
Este difusor, fabricado com perfis de alumínio tem uma passagem de 15 mm, facultando-lhe um elevado nível estético.

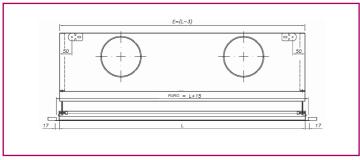
Acabamentos

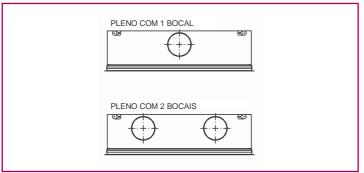
Construído em alumínio anodizado natural mate ou pré-lacado em branco brilhante RAL-9010, como acabamentos padrão. As alhetas direccionais são orientáveis através de uma roda de accionamento, podendo-se alternar o jacto de ar em diferentes direcções a cada 700 mm no máximo e 100 mm no mínimo (difusor de modelo opcional LK-70-MULTI). A versão LK-70-P integra um pleno de alimentação de chapa de aço galvanizada, com ou sem isolamento e um registo de regulação integrada na gola de ligação, acessível a partir do local, em execução padrão. Existem dois tipos de pleno, fixo e desmontável. A pedido, existe a possibilidade de integrar o difusor em placa de dimensões especiais para a instalação em tectos modulares

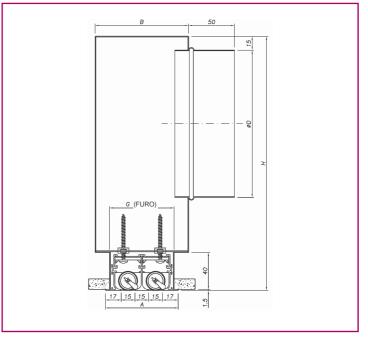

(1200x300,...) com acabamento pintado em RAL.


Utilização

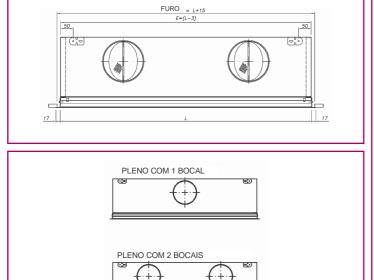

Os difusores lineares modelo LK-70 estão indicados para instalação no tecto. Especialmente apropriado para caudal variável, embora o seu modelo permita um excelente funcionamento também com caudal constante. As alhetas são direccionais, permitindo orientar o jacto de ar de 0º a 180º. Este difusor pode ser utilizado como retorno. Intercalar difusores de retorno com outros de insuflação na mesma linha contínua, assegura um elevado grau de estética e funcionalidade.

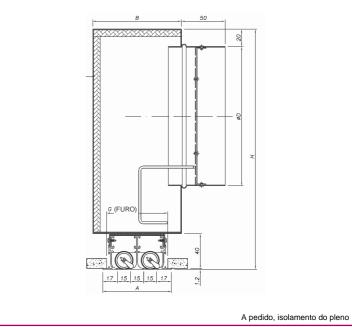

LK-70 com pleno FIXO sem registo

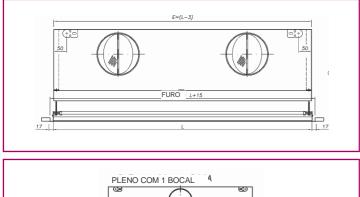


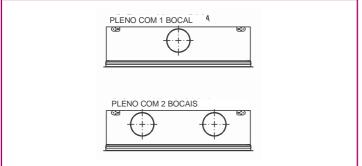


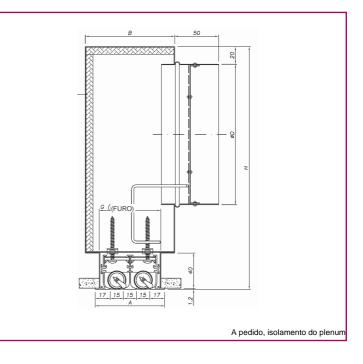
LK-70 com plenum DESMONTÁVEL sem registo



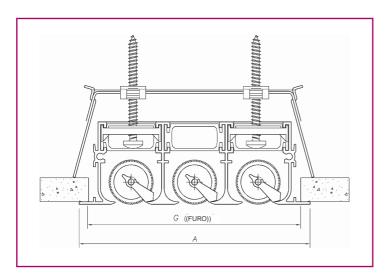





LK-70 com pleno FIXO com registo regulável a partir do local



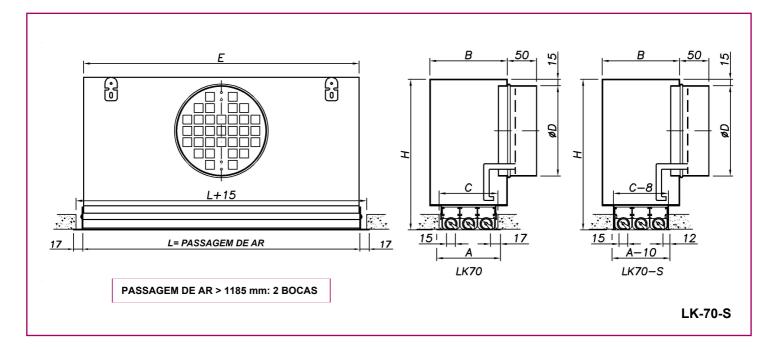
LK-70 com pleno DESMONTÁVEL com registo regulável a partir do local



DIMENSÕES para pleno FIXO ou DESMONTÁVEL sem ou com REGISTO

VIAS	NOMINAL	L PASS. DE AR	E	ØD	Nº GOLAS	А	В	G (FURO)	Н	Nº TROÇOS ALHETAS	
	600	600	582							1	
	900	900	882		1						
	1015	1000	997							2	
1	1200	1200	1182	124		49	72	41	225	2	
'	1500	1500	1482	124	2	73	12	71	220		
	1800	1800	1782								
	2000	2000	1982							3	
	2015	2000	1997								
	600	600	582							1	
	900	900	882		1						
	1015	1000	997							2	
2	1200	1200	1182	159 79 102 71		275					
	1500	1500	1482	100	2		102	''	210		
	1800	1800	1782		_						
	2000	2000	1982							3	
	2015	2000	1997								
	600	600	582							1	
	900	900	882		ĺ	1					
	1015	1000	997				132	101	325	2	
3	1200	1200	1182	199		109				_	
	1500	1500	1482	100	2	100	102	101	020		
	1800	1800	1782		_						
	2000	2000	1982							3	
	2015	2000	1997								
	600	600	582							1	
	900	900	882		1						
	1015	1000	997							2	
4	1200	1200	1182	199		139	162	131	325		
7	1500	1500	1482	199	2	100	102	131	323		
	1800	1800	1782								
	2000	2000	1982							3	
	2015	2000	1997								

LK-70 com PONTES DE MONTAGEM para execução em tectos.

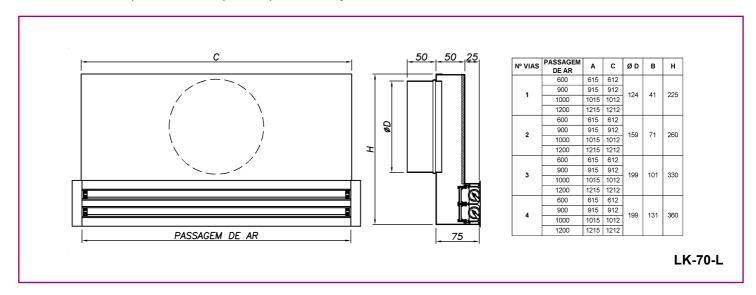


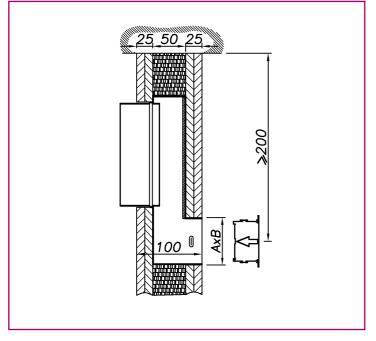
VIAS	G (FURO)	Α
1	41	49
2	71	79
3	101	109
4	131	139

Modelos e dimensões LK-70 / LK-70-S

LK-70-S, difusor linear de insuflação com perfil exterior estreito de 12 mm. Dados técnicos similares ao LK-70.

Nº VIAS	L	E	ØD	Nº GOLAS	Α	В	С	Н	
	600	597	124						
	900	897	124	1					
	1000	997	124	1					
1 1	1200	1197	124		49	72	41	225	
'	1500	1497	124] _ [
	1800	1797	124	2					
	2000	1997	124	1					
	600	597	159						
	900	897	159	1			71	275	
	1000	997	159	1	79				
2	1200	1197	159			102			
	1500	1497	159	2					
	1800	1797	159						
l	2000	1997	159	1					
	600	597	199	1					
	900	897	199						
	1000	997	199	1		132	101		
3	1200	1197	199		109			325	
3	1500	1497	199	1 .					
	1800	1797	199	2					
	2000	1997	199	1					
	600	597	199						
	900	897	199	1					
	1000	997	199]					
4	1200	1197	199		139	162	131	325	
-	1500	1497	199]					
	1800	1797	199	2					
	2000	1997	199						

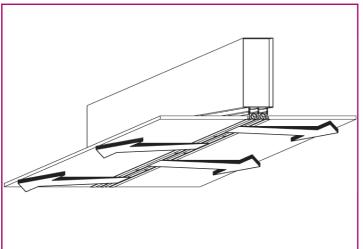

Modelos e dimensões LK-70-L

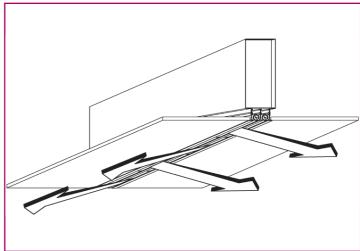

O difusor linear de parede modelo LK-70-L foi especialmente concebido para instalação em paramentos de superfície contínua uma vez que requer pouco espaço. Origina um fluxo de ar de mistura turbulenta, sendo adequado para alcances até 5 m e alturas de instalação de 2,5 a 3,5 m.

Para obter um jacto aderente com ar frio, é aconselhável não ultrapassar as distâncias de instalação do difusor relativamente ao tecto h < 300 mm.

Se o pleno estiver equipado com isolamento acústico, não há necessidade de atenuador para evitar ruído.

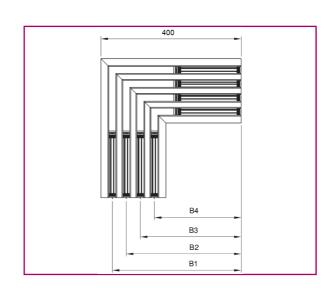
O difusor linear de parede está disponível para insuflação ou retorno de ar, ou como difusor combinado.





É recomendável a instalação do pleno desde o corredor e o difusor desde o interior do compartimento, só depois de a construção do mesmo estar terminada; ficando assim protegido da sujidade e danos durante a construção.

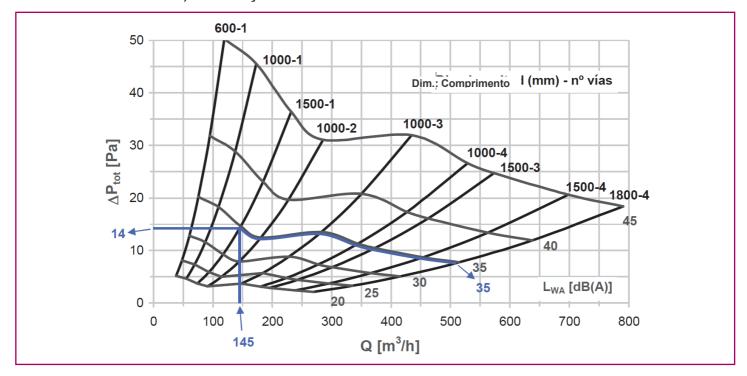
Os dados técnicos do modelo LK-70-L são equiparáveis aos do modelo LK-70 em insuflação horizontal.



CANTOS LK-70

VIAS	В
1	275,5
2	245,5
3	215,5
4	185.5

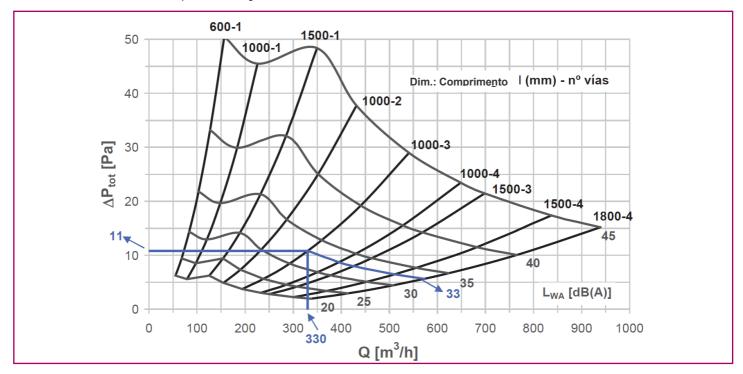
LINHAS CONTÍNUAS LK-70



	LK - 70 HORIZONTAL													
(Q	Dim	600-1	1000-1	1200-1 600-2	1500-1	1800-1 900-2 600-3	1000-2	1200-2 600-4	1500-2 1000-3	1000-4	1500-3	1500-4	1800-4
(m³/h)	(l/s)	A _k (m ²)	0,00553	0,00922	0,01107	0,01383	0,01660	0,01844	0,02213	0,02767	0,03689	0,04150	0,05533	0,06640
		V _k (m/s)	2,0	1,2										
40	11,1	X (m)	2,1	1,6	1									
40	11,1	P _t (Pa)	6	2										
		L _W -dB(A)	21	<20										
		V _k (m/s)	3,0	1,8	1,5	1,2								
60	16,7	X (m) P _t (Pa)	3,1 13	2,4 5	2,2	2,0								
		L _W -dB(A)	30	22	<20	<20								
		V _k (m/s)	4,0	2,4	2,0	1,6	1,3	1,2						
90	22.2	X (m)	4,2	3,2	3,0	2,6	2,4	2,3						
80	22,2	P _t (Pa)	23	10	7	4	3	2						
		L _W -dB(A)	36	28	25	22	<20	<20						
		V _k (m/s)	6,0	3,6	3,0	2,4	2,0	1,8	1,5	1,2				
120	33,3	X (m) P _t (Pa)	6,3 51	4,9 22	4,4 15	4,0 10	3,6 7	3,4 5	3,1 4	2,8				
		L _W -dB(A)	45	37	34	31	28	26	<20	<20				
		V _k (m/s)	40	4,8	4,0	3,2	2,7	2,4	2,0	1,6	1,2	1,1		
400		X (m)		6,5	5,9	5,3	4,8	4,6	4,2	3,7	3,2	3,1		
160	44,4	P _t (Pa)		39	27	17	12	10	7	4	2	1		
		L _W -dB(A)		43	40	37	34	32	25	22	<20	<20		
		V _k (m/s)		6,0	5,0	4,0	3,3	3,0	2,5	2,0	1,5	1,3	1,0	
200	55,6	X (m)		8,1 61	7,4 42	6,6 27	6,0 19	5,7 15	5,2 11	4,7 7	4,0	3,8	3,3	
		P _t (Pa) L _W -dB(A)		48	45	42	39	37	31	27	22	21	<20	
		V _k (m/s)		40	70	5,0	4,2	3,8	3,1	2,5	1,9	1,7	1,3	1,0
050	00.4	X (m)				8,3	7,5	7,1	6,5	5,8	5,1	4,8	4,1	3,8
250	69,4	P _t (Pa)				42	29	24	17	11	6	5	3	2
		L _W -dB(A)				47	44	42	36	32	28	26	21	<20
		V _k (m/s)					5,0	4,5	3,8	3,0	2,3	2,0	1,5	1,3
300	83,3	X (m)					9,0	8,6 34	7,8 24	7,0 15	6,1 9	5,7	5,0 4	4,5 3
		P _t (Pa) L _W -dB(A)					42 48	46	40	36	32	7 30	25	22
		V _k (m/s)					40	70	4,4	3,5	2,6	2,3	1,8	1,5
250	07.0	X (m)	1						9,1	8,2	7,1	6,7	5,8	5,3
350	97,2	P _t (Pa)	1						32	21	12	9	5	4
		L _W -dB(A)							44	40	35	34	29	26
		V _k (m/s)							5,0	4,0	3,0	2,7	2,0	1,7
400	111,1	X (m) P _t (Pa)	-						10,4 42	9,3 27	8,1 15	7,6 12	6,6 7	6,0 5
		L _W -dB(A)							47	43	39	37	32	29
		V _k (m/s)							.,	5,0	3,8	3,3	2,5	2,1
500	420.0	X (m)	1							11,7	10,1	9,5	8,3	7,5
500	138,9	P _t (Pa)								42	24	19	11	7
		L _W -dB(A)								48	44	42	37	34
		V _k (m/s)		SIMBO	LOGIA						4,5	4,0	3,0	2,5
600	166,7	X (m)			_						12,1 34	11,4 27	9,9 15	9,0
		P _t (Pa) L _W -dB(A)	ł	A _k	Área efec						34 48	46	41	11 39
		V _k (m/s)		V _k X		de efectiva	a em m/s a uma vel	ncidada m	ávima am	70na	10	10	3,5	2,9
700	404.4	X (m)			ocupada								11,6	10,6
700	194,4	P _t (Pa)]		de 3 m, c	onsideran	do o efeito	Coanda					21	14
		L _W -dB(A)		P _t	Perda de	carga tota	al em Pa						45	42
		V _k (m/s)		L _w	Nivel de p	ootëncia s	onora em	dB(A)						3,3
800	222,2	X (m)												12,1
		P _t (Pa) L _W -dB(A)												19 45
		LW-ub(A)												40

						LK - 7	0 VERTICA	AL.						
(Q	Dim	600-1	1000-1	1200-1 600-2	1500-1	1800-1 900-2 600-3	1000-2	1200-2 600-4	1500-2 1000-3	1000-4	1500-3	1500-4	1800-4
(m³/h)	(l/s)	Ak (m²)	0,00581	0,00968	0,01162	0,01452	0,01742	0,01936	0,02323	0,02904	0,03872	0,04356	0,05808	0,06969
		V _k (m/s)	2,4											
50	13,9	Y _{máx} (m)	1,2	1										
	, .	P _t (Pa)	5											
		L _W -dB(A)	<20	2.0	4.0									
		V _k (m/s Y _{máx} (m)	3,6 1,9	2,2 1,2	1,8 1,0									
75	20,8	P _t (Pa)	10	5	3									
		L _W -dB(A)	27	<20	<20									
		V _k (m/s	4,8	2,9	2,4	1,9								
100	27,8	Y _{máx} (m)	2,5	1,6	1,4	1,2								
	, -	P _t (Pa)	19	8	6	4								
		L _W -dB(A) V _k (m/s	33 6,7	25 4,0	22 3,3	<20 2,7	2,2	2,0	1,7					
		Y _{máx} (m)	3,5	2,2	1,9	1,6	1,4	1,3	1,7					
140	38,9	P _t (Pa)	36	16	11	7	5	4	3					
		L _W -dB(A)	41	33	30	22	<20	<20	<20					
		V _k (m/s	8,6	5,2	4,3	3,4	2,9	2,6	2,2	1,7				
180	50,0	Y _{máx} (m)	4,5	2,9	2,5	2,1	1,8	1,7	1,5	1,3				
		P _t (Pa) L _W -dB(A)	60 47	26 39	18 36	12 28	8 25	7 24	5 21	3 <20				
		V _k (m/s	47	6,9	5,7	4,6	3,8	3,4	2,9	2,3	1,7	1,5		
0.40	00.7	Y _{máx} (m)		3,8	3,3	2,8	2,4	2,3	2,0	1,7	1,3	1,2		
240	66,7	P _t (Pa)		47	32	21	14	12	8	5	3	2		
		L _W -dB(A)		46	43	35	32	31	28	24	<20	<20		
		V _k (m/s			7,2	5,7	4,8	4,3	3,6	2,9	2,2	1,9	1,4	1,2
300	83,3	Y _{máx} (m) P _t (Pa)			4,2 51	3,5 32	3,1 22	2,8 18	2,5 13	2,1 8	1,7 5	1,5 4	1,2 2	1,0
		L _W -dB(A)			48	41	38	36	33	30	25	24	<20	<20
		V _k (m/s				7,7	6,4	5,7	4,8	3,8	2,9	2,6	1,9	1,6
400	111,1	Y _{máx} (m)				4,7	4,1	3,8	3,3	2,8	2,2	2,1	1,5	1,3
400	111,1	P _t (Pa)				57	40	32	22	14	8	6	4	2
		L _W -dB(A)				48	45	43	40	37	32	31	26	23
		V _k (m/s Y _{máx} (m)						7,2 4,7	6,0 4,2	4,8 3,5	3,6 2,8	3,2 2,6	2,4 1,9	2,0 1,7
500	138,9	P _t (Pa)						51	35	22	13	10	6	4
		L _W -dB(A)						49	46	42	38	36	32	29
		V _k (m/s								5,7	4,3	3,8	2,9	2,4
600	166,7	Y _{máx} (m)								4,2	3,4	3,1	2,3	2,0
	ĺ	P _t (Pa) L _W -dB(A)								32 47	18 42	14 41	8 36	6 33
		V _k (m/s								41	5,0	4,5	3,3	2,8
700	404.4	Y _{máx} (m)									3,9	3,6	2,7	2,3
700	194,4	P _t (Pa)									25	20	11	8
		L _W -dB(A)									46	44	40	37
		V _k (m/s		SIMBO	LOGIA							5,1	3,8	3,2
800	222,2	Y _{máx} (m) P _t (Pa)			,							4,1 26	3,1 14	2,7
		L _W -dB(A)		A _k		ctiva em m						48	43	40
		V _k (m/s		V _k X		de efectiva m m. para		cidade ma	áxima em				4,3	3,6
900	250,0	Y _{máx} (m)		<u> </u>	zona ocu	pada de 0	,25 m/s, ∆	T= 0 K e ι	uma				3,5	3,0
300	250,0	P _t (Pa)			zona ocupada de 0,25 m/s, ΔT= 0 K e uma altura de instalação de 3 m, considerando o								18	13
		L _W -dB(A)		Ь	efeito Coa		al em Da						46	43
		V _k (m/s Y _{máx} (m)		P_t										4,0 3,3
1000	277,8	P _t (Pa)												16
		L _W -dB(A)												46
-														

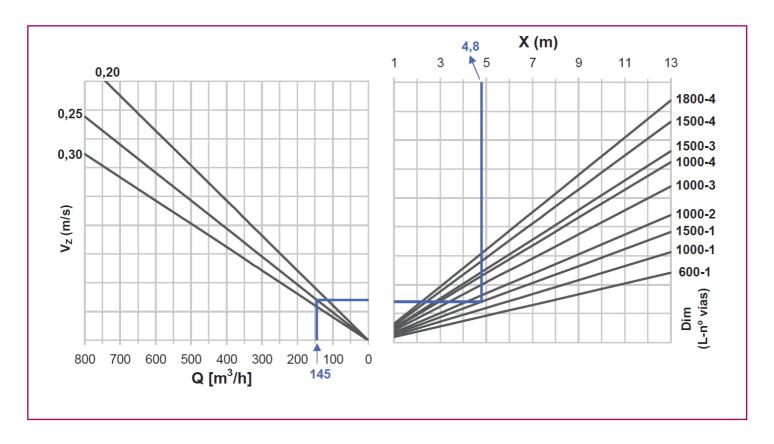
Gráfico 1. NÍVEL SONORO, INSUFLAÇÃO HORIZONTAL



INSUFLAÇÃO HORIZONTAL								
Largura efectiva de uma via	h _k = 0,009222 m							
Área efectiva de um difusor	$A_k (m^2) = h_k \times L (m) \times n^0 \text{ vias}$							

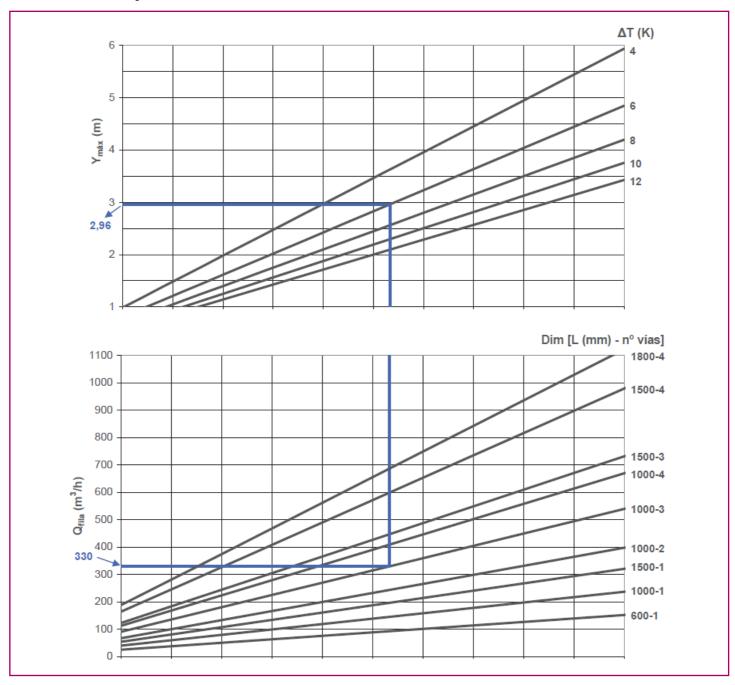
L = Comprimento nominal do difusor (comprimento da passagem de ar.)

Gráfico 2. NÍVEL SONORO, INSUFLAÇÃO VERTICAL



INSUFLAÇÃO VERTICAL								
Largura efectiva de uma via	h _k = 0,009679 m							
Área efectiva de um difusor	$A_k (m^2) = h_k \times L (m) \times n^0 \text{ vias}$							

L = Comprimento nominal do difusor (comprimento da passagem de ar.)



13

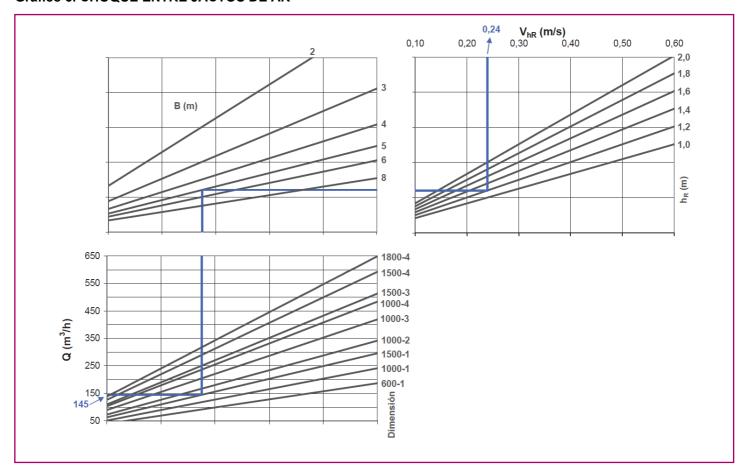
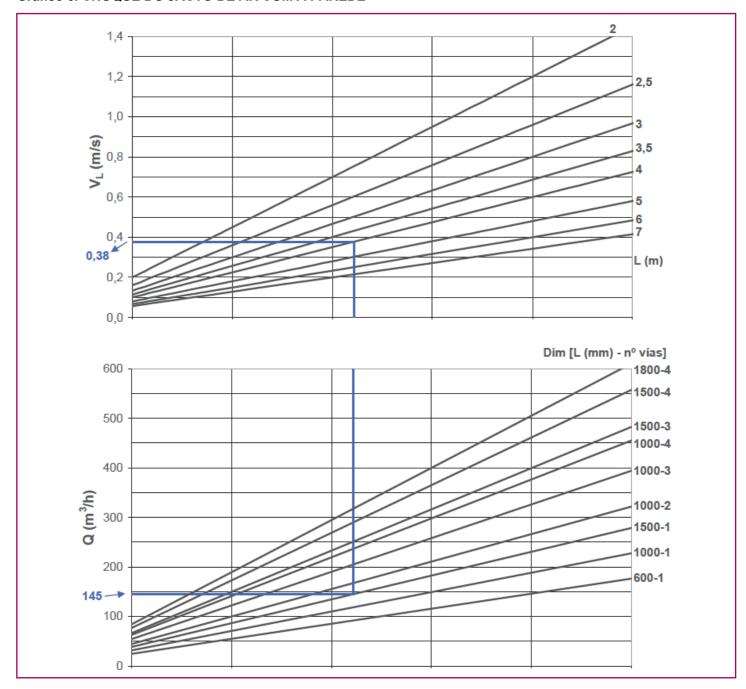


Gráfico 4. INSUFLAÇÃO VERTICAL

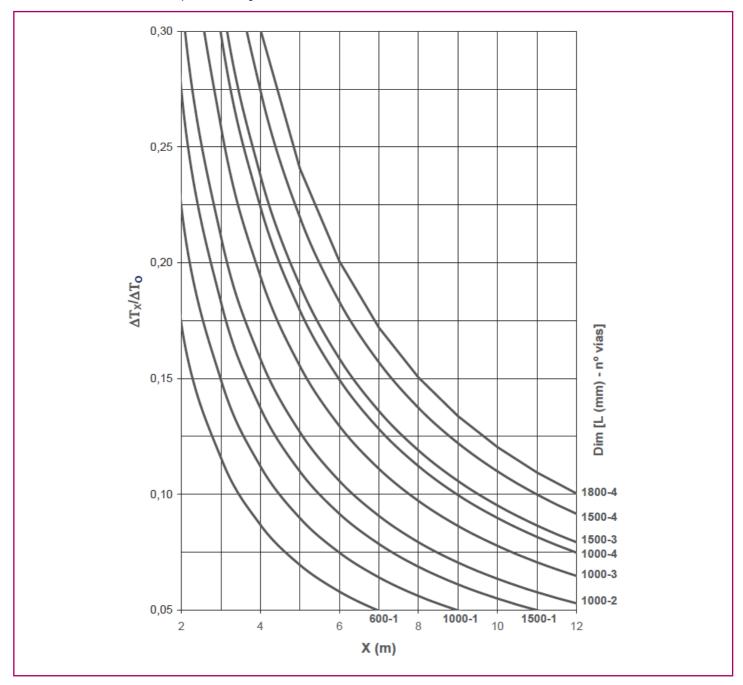
Gráfico 5. CHOQUE ENTRE JACTOS DE AR


B Distância entre eixos de difusores (m)

h_R Altura desde o tecto à zona ocupada (m)

V_{hR} Velocidade à distância h_R do tecto abaixo do choque de jactos (m/s)

Gráfico 6. CHOQUE DO JACTO DE AR COM A PAREDE


L Distância horizontal do difusor à parede + h_R

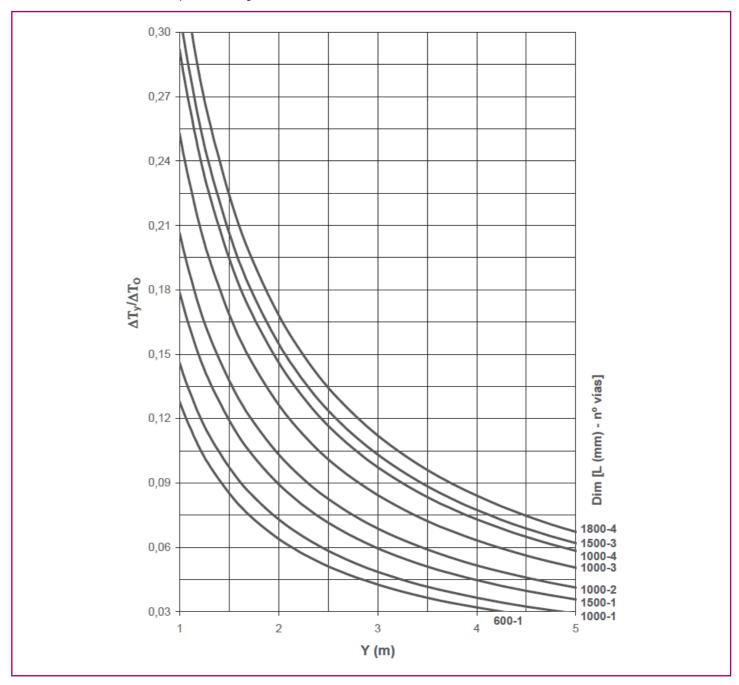
 V_L Velocidade na parede a uma distância h_R do tecto

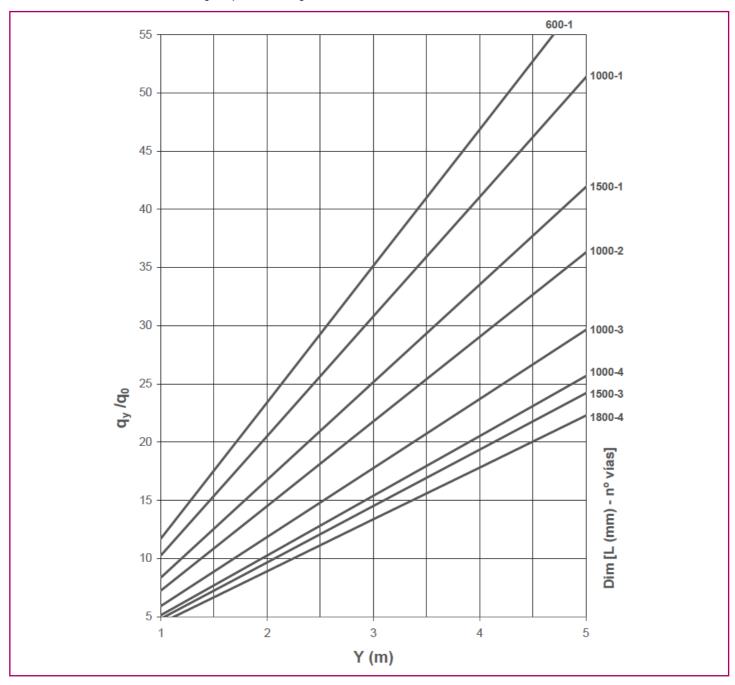
17

Gráfico 7. TEMPERATURA, INSUFLAÇÃO HORIZONTAL

- ΔT_0 Diferença de temperaturas entre insuflação e ambiente interior.
- ΔT_x Diferença de temperaturas entre o jacto de ar (para um alcance X) e o interior.

Gráfico 8. TEMPERATURA, INSUFLAÇÃO VERTICAL





Gráfico 9. TAXA DE INSUFLAÇÃO, INSUFLAÇÃO HORIZONTAL

 q_x/q_o Taxa de insuflação. Quociente entre o caudal deslocado pelo jacto de ar para um alcance X e o caudal de insuflação.

Gráfico 10. TAXA DE INSUFLAÇÃO, INSUFLAÇÃO VERTICAL

Exemplos de selecção

Exemplo 1. Insuflação Horizontal

Sugere-se a selecção de um difusor linear LK-70 com os seguintes dados de partida:

· Caudal: 145 m³/h

• Nível de potência sonora < 35 dB(A)

· Altura do tecto: 3 m

• Na zona de parede, a distância do difusor à mesma é de 2,8 m

• Distância entre dois difusores (na direcção de insuflação de ar): 5 m

Entrando no gráfico 1 com o caudal de 145 m³/h verifica-se que para um difusor linear LK 70 1500 - 1 via, o nível de potência sonora é de 35 dB(A), com uma perda de carga de 14 Pa.

Para obter a velocidade efectiva (V_k) , primeiro é preciso conhecer a área efectiva do difusor (A_k) . Neste caso aparece no quadro de selecção de insuflação horizontal, mas também se pode calcular aplicando a fórmula indicada no quadro da página 9, resultando:

$$A_k = 0.009222 \text{ m x } 1.5 \text{ m x } 1 = 0.01383 \text{ m}^2$$

Portanto, a velocidade efectiva (V_k) de saída do difusor será igual a:

$$V_k = \frac{145 \text{ m}^3/\text{h} / (3600 \text{ s/h})}{0.01383 \text{ m}^2} = 2.9 \text{ m/s}$$

Para obter o alcance de um difusor 1500-1 vía, com um caudal de 145 m³/h, há que entrar no gráfico número 3 e, para uma velocidade máxima na zona ocupada de 0,25 m/s, obtém-se um alcance em condições isotérmicas de 4,8 m.

A velocidade máxima na zona ocupada, provocada pelo choque entre jactos de ar obtém-se no gráfico 5. Entrando com o caudal de 145 m³/h, distância entre eixos de dois difusores (B = 5 m) e altura desde o tecto até à zona ocupada ($h_R = 3 \text{ m} - 1.8 \text{ m} = 1.2 \text{ m}$) obtém-se uma velocidade de $V_{hR} = 0.24 \text{ m/s}$

Para determinar a velocidade na zona da parede, com o difusor instalado a 2,8 m da mesma, entra-se no gráfico número 6 com o caudal de 145 m³/h. O comprimento L a considerar para calcular a velocidade a uma altura do pavimento de 1,8 m será:

$$L = 2.8 + (3 - 1.8) = 4 \text{ m}$$

Com estes dados obtém-se uma velocidade neste ponto de $V_1 = 0.38$ m/s.

Exemplos de selecção

Exemplo 2. Insuflação Vertical

Sugere-se a selecção de um difusor linear LK-70 com os seguintes dados de partida:

·Caudal: 330 m³/h

•Nível de potência sonora < 35 dB(A) •Penetração vertical máxima: 3 m

 $\bullet \Delta T = +6 \text{ K}$

Entrando no gráfico número 4 com um caudal de 330 m³/h observa-se que para um difusor LK-70 de tamanho 1000-3 vias, e um $\Delta T = +6$ K, obtém-se uma penetração máxima $Y_{máx} = 3$ m.

Para obter o nível de potência sonora e a perda de carga do difusor seleccionado, entramos no gráfico número 2 com um caudal de 330 m³/h. Obtém-se um nível de potência sonora de 33 dB(A) e uma perda de carga de 11 Pa.

Para obter a velocidade efectiva (V_k) , primeiro há que conhecer a área efectiva do difusor (A_k) . Neste caso aparece no quadro de selecção de insuflação vertical, mas também se pode calcular aplicando a fórmula indicada no quadro da página 9, resultando:

$$A_k = 0.009679 \text{ m x } 1\text{m x } 3 = 0.029037 \text{ m}^2$$

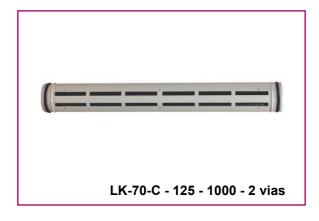
Portanto, a velocidade efectiva (V_k) de saída do difusor será igual a:

$$V_k = \frac{330 \text{ m}^3/\text{h} / (3600 \text{ s/h})}{0,029037 \text{ m}^2} = 3,2 \text{ m/s}$$

Codificação

Através da codificação anexa, define-se tanto o difusor como o pleno:

	<u> </u>
LK-70 LK-70-S LK-70-MULTI LK-70-L 1-2-3-4	Difusor linear Difusor linear de perfil exterior estreito Difusor linear com ripas de comprimento mínimo de 100 mm Difusor linear de parede Nº de vias Comprimento do difusor (nominal, orifício em
 A	Nº troços STANDARD de alhetas deflectoras Nº de troços a definir: (modelo LK-70-MULTI) (mínimo 100 máximo 700 mm)
PM	Ponte de montagem para execução em tectos
PF PD	Pleno fixo sem registo Pleno desmontável sem registo
PF-C PD-C	Pleno fixo com registo Pleno desmontável com registo
PFA PDA	Pleno fixo isolado sem registo Pleno desmontável isolado sem registo
PFA-C PDA-C	Plenum fixo isolado com registo Plenum desmontável isolado com registo
RAL 9010 RAL	Acabamento padrão em cor branca Acabamento noutro RAL


Exemplo de codificação:

LK-70-1-1200-PFA-C RAL 9010

Difusor linear LK-70 de 1 via e nominal 1200 mm, 2 troços de alhetas (padrão), com pleno fixo isolado e registo de regulação na gola, pintado em branco RAL 9010.

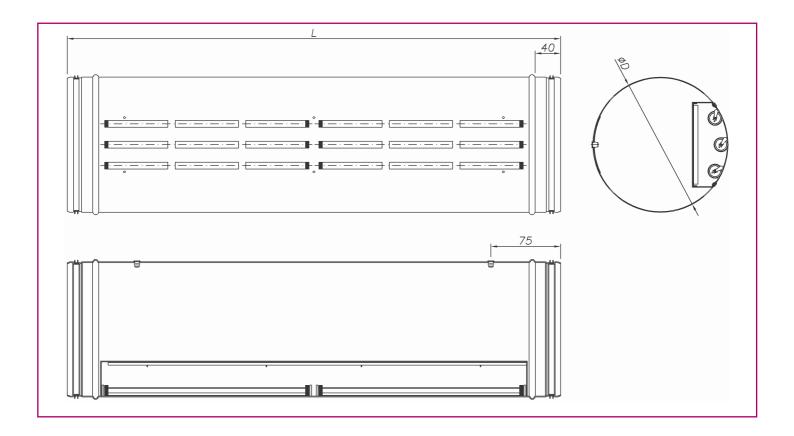
Difusor linear integrado em conduta circular LK-70-C

Descrição

Difusor linear de insuflação, modelo LK70-C, para caudal variável ou constante, integrado em conduta circular. Difusor para altos caudais de insuflação e baixa velocidade na zona ocupada. Altura de instalação recomendada entre 2,5 e 4 m.

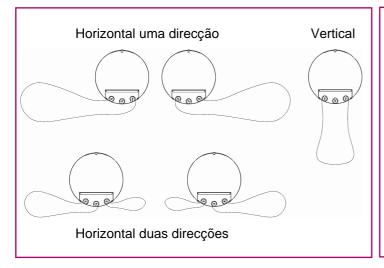
Este difusor tem uma passagem de ar de 17 mm, facultando-lhe um elevado nível estético.

Acabamentos

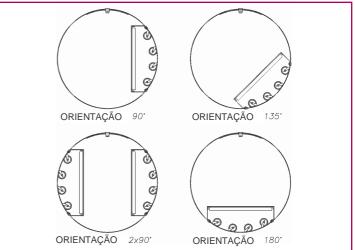

Construído em chapa de aço galvanizado, como acabamento padrão em branco RAL-9010 brilhante. Alhetas fabricadas com perfis de alumínio extrudido em cor negra como acabamento padrão. As alhetas direccionais são orientáveis através de uma roda de accionamento, podendo-se orientar o fluxo do ar em diferentes direcções. Para assegurar o correcto equilíbrio da instalação, integra um registo corrediça de regulação acessível a partir do exterior, que também equaliza o fluxo de ar. Existe a possibilidade de instalar um número determinado de troços de difusor para formar linhas contínuas com um determinado comprimento, utilizando-se guias de ligação. Podem ser fornecidos troços cegos e condutas em "T" ou "L" a 90°. A pedido, existe a possibilidade de fornecer outros acessórios.

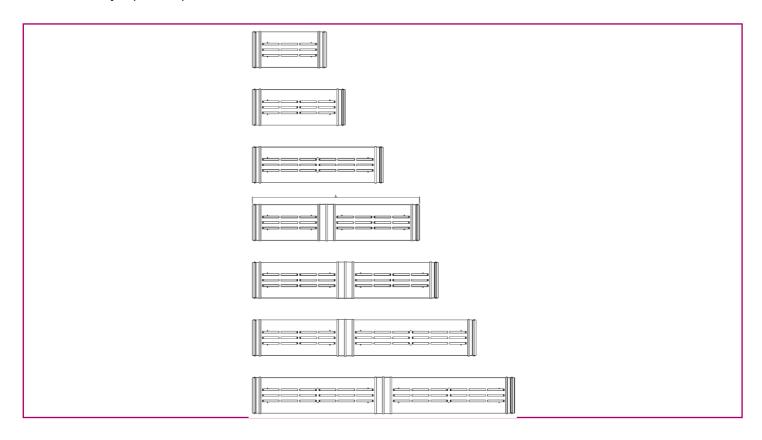
Utilização

Os difusores lineares modelo LK-70-C estão indicados para instalação em conduta. Especialmente apropriado para caudal variável, embora o seu modelo permita um excelente funcionamento também com caudal constante. As alhetas são direccionais, permitindo orientar o jacto de ar de 0º a 180º. Este difusor pode ser utilizado como retorno sem alhetas e registo. Com o fim de conseguir as exigências arquitectónicas solicitadas, intercalar difusores de retorno com outros de insuflação assegura um elevado grau de estética e funcionalidade. Na execução para retorno de ar não são fornecidas as alhetas utilizadas para a insuflação.

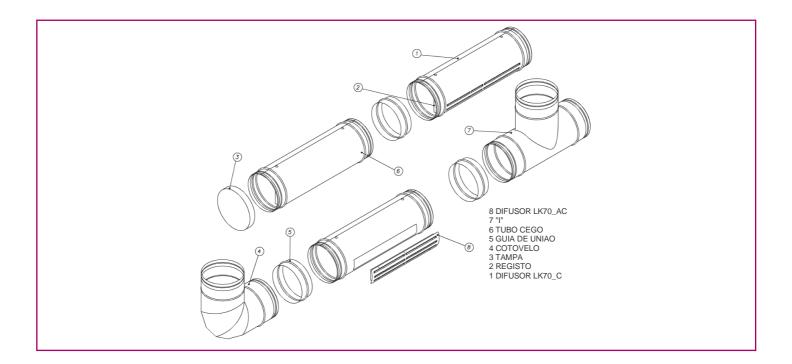


NOMINAL							Nº DE	VÍAS							D
125	1	2	-	-	-	-	-	-	-	-	-	-	-	-	123
160	1	2	3	4	-	-	-	-	-	-	-	-	-	-	158
200	1	2	3	4	-	-	-	-	-	-	-	-	-	-	198
225	1	2	3	4	-	-	-	-	-	-	-	-	-	-	223
250	1	2	3	4	-	-	-	-	-	-	-	-	-	-	248
300	1	2	3	4	5	6	-	-	-	-	-	-	-	-	298
315	1	2	3	4	5	6	-		-	-	-	-	1	1	313
355	1	2	3	4	5	6	7	8	-	-	-	-	-	-	353
400	1	2	3	4	5	6	7	8	-	-	-	-	-	-	398
450	1	2	3	4	5	6	7	8	-	-	-	-	-	-	448
500	1	2	3	4	5	6	7	8	9	10	11	12	13	14	498
630	1	2	3	4	5	6	7	8	9	10	11	12	13	14	628
710	1	2	3	4	5	6	7	8	9	10	11	12	13	14	708
800	1	2	3	4	5	6	7	8	9	10	11	12	13	14	798
900	1	2	3	4	5	6	7	8	9	10	11	12	13	14	898

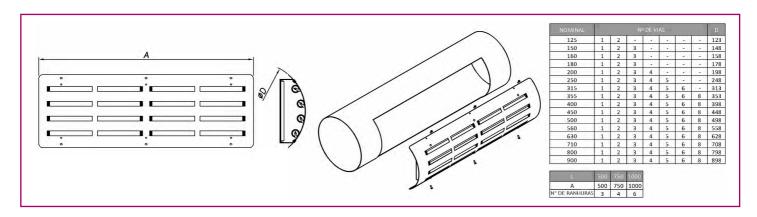

L	500	750	1000	1250	1500	1750	2000	
Nº DE RANHURAS	3	4	6	7	8	10	12	
Nº DE TROÇOS		1		2				


Opções de direcção do jacto de ar

Posição das alhetas



Número de troços por comprimento



Instalação

LK-70-AC

Dados técnicos. Quadros de selecção

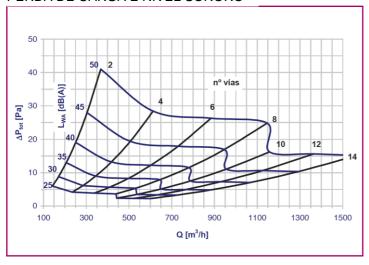
	LK - 70 - C - 1000 HORIZONTAL								
(m³/h)	(I/s)	Nº VIAS	2	4	6	8	10	12	14
		Vk (m/s)	1.7	0.8					
100	27.8	X (m)	1.9	1.3					
		P _t (Pa)	3	1					
		L _W -dB(A)	<20	<20					
	55.6	Vk (m/s)	3.4	1.7					
200		X (m)	3.8	2.7					
200		P _t (Pa)	12	3					
		L _W -dB(A)	34	21					
		Vk (m/s)	5.1	2.5	1.7	1.3			
300	83.3	X (m)	5.6	4.0	3.2	2.8			
300		P _t (Pa)	27	7	3	2			
		L _W -dB(A)	45	31	22	<20			
	111.1	Vk (m/s)		3.4	2.3	1.7	1.4		
400		X (m)		5.3	4.3	3.8	3.4		
400		P _t (Pa)		12	5	3	2]	
		L _W -dB(A)		39	29	23	22		
		Vk (m/s)		4.2	2.8	2.1	1.7	1.4	1.2
500	138.9	X (m)		6.6	5.4	4.7	4.2	3.8	3.5
300		P _t (Pa)		19	8	5	3	2	2
		L_W -dB(A)		45	35	28	28	24	20
	208.3	Vk (m/s)			4.2	3.2	2.5	2.1	1.8
750		X (m)			8.1	7.0	6.3	5.7	5.3
750		P _t (Pa)			19	11	7	5	3
		L _W -dB(A)			46	39	39	34	31
	277.8	Vk (m/s)				4.2	3.4	2.8	2.4
1000		X (m)				9.4	8.4	7.7	7.1
1000		P _t (Pa)				19	12	8	6
		L_{M} -dB(A)				46	46	42	38
	347.2	Vk (m/s)					4.2	3.5	3.0
1250		X (m)					10.5	9.6	8.9
1200		P _t (Pa)					19	13	10
		L _W -dB(A)					52	48	44
	416.7	Vk (m/s)						4.2	3.6
1500		X (m)						11.5	10.6
1500		P _t (Pa)						19	14
		L _W -dB(A)						52	49

SIMBOLOGIA

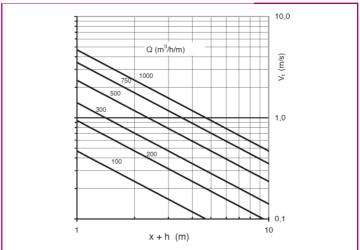
V_k Velocidade efectiva em m/s

X Alcance em m, para uma velocidade terminal de 0,3 m/s

ΔT= 0 K e uma altura de instalação de 3 m


Pt Perda de carga total em Pa

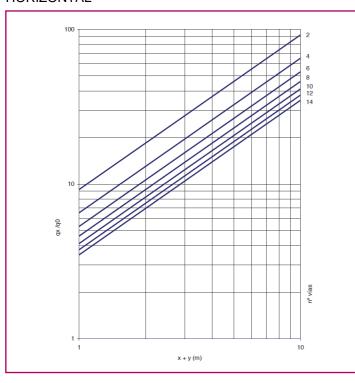
L_w Nível de potência sonora em dB(A)



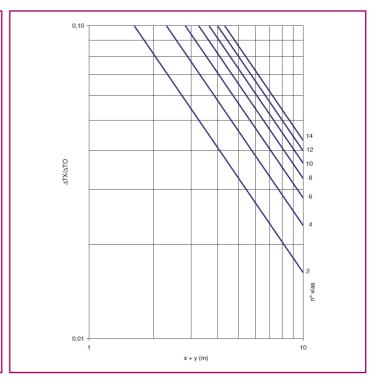
Dados técnicos. Gráficos de selecção

PERDA DE CARGA E NÍVEL SONORO

ALCANCE HORIZONTAL


Corrección caudal por longitud de conducto						
Longitud (mm)	500	750	1000	1250	1500	1750
KQ	0,88	0,93	1	1,01	1,1	1,14

 $Q(m^3/h) = k_Q x Q_{gráfico}$


	Corre	ección velo	ocidad ten	minal por	número d	e vías	
n	2	4	6	8	10	12	14
K _{Vt}	1	1.2	1.4	1.8	2	2.4	2.6

 V_t (m/s) = k_{Vt} x $Vt_{gráfico}$

TAXA DE INDUÇÃO - INSUFLAÇÃO HORIZONTAL

COEFICIENTE DE TEMPERATURA - INSUFLAÇÃO HORIZONTAL

Codificação

Através da codificação anexa, define-se tanto o difusor como o pleno:

LK-70-C	Difusor linear integrado em conduta circular
LK-70-AC	Difusor linear integrado para adaptação circular
Ø	de 125 a 900 mm
500 xx	Comprimento da conduta
1 xx	Nº de vias
V	Posição das alhetas descarga vertical
H	Posição das alhetas descarga horizontal
H2	Posição das alhetas descarga horizontal dupla
D	Posição das alhetas descarga diagonal
T TF B C CF90 CF180 T90 L90	Sem tampa Tampa sem fixação Tampa com fixação através de esquadria Guia de união Tubo cego sem fixação Tubo cego com fixação integrada a 90° Tubo cego com fixação integrada a 180° "T" a 90° "L" a 90°
RAL 9010	Acabamento padrão em cor branca brilhante
RAL	Acabamento noutro RAL

Exemplo de codificação:

LK-70-C-125-1000-2-H-T-RAL 9010

Difusor linear LK-70-C de 2 vias, de Ø125 mm e comprimento de 1000 mm, com posição de alhetas em descarga horizontal e com tampa sem fixação, pintado em branco RAL 9010 brilhante.

Especificação técnica

Difusor linear integrado em conduta circular, modelo LK-70- C, com alhetas direccionais orientáveis através de roda de accionamento para caudal variável ou constante. Construído em chapa de aço galvanizado, como acabamento padrão em branco RAL-9010 brilhante. Alhetas fabricadas com perfis de alumínio extrudido em cor negra como acabamento padrão. Integra registo corrediça com regulação acessível a partir do exterior.

ESTE CATÁLOGO É PROPRIEDADE INTELECTUAL.

Fica proibida a reprodução parcial ou total do seu conteúdo sem autorização expressa e formal da KOOLAIR, S.L.

KOOLAIR, S.L.

Calle Urano, 26 Poligono industrial nº 2 – La Fuensanta 28936 Móstoles - Madrid - (España)

Tel: +34 91 645 00 33 Fax: +34 91 645 69 62 e-mail: info@koolair.com