

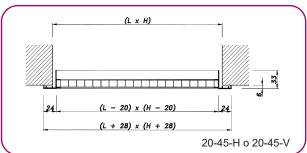
série

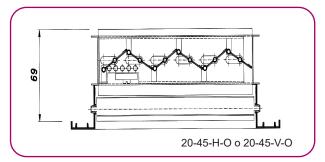
20.2

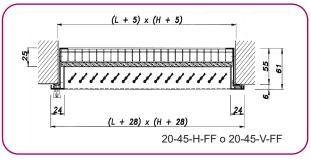
Grelhas de retorno e ventilação

www.koolair.com

ÍNDICE


Grelhas de retorno Tabela de selecção	2
Grelhas de retícula	5
Tabela de selecção	6
Grelhas de porta	8
Tabela de selecção	9
Grelhas de tomada de ar exterior Tabela de selecção Acessórios e montagem Dados de interesse geral	11 12 14 16





Grelhas de retorno (alhetas fixas a 45°)

Descrição

Modelo 20-45, grelha de alumínio, alhetas fixas a 45°. Modelo 21-45, grelha de chapa de aço, alhetas fixas a 45°.

Acabamentos

Alumínio anodizado à cor natural. Chapa de aço pintada em branco RAL 9010. Acabamentos especiais a pedido.

Dimensões instalação com aro de montagem

Na montagem de grelhas com aro metálico, a dimensão do negativo é correspondente à dimensão nominal das grelhas. Assim, uma grelha de 500 x 300, precisará de um orificio com as mesmas dimensões.

Dimensões instalação por parafusos

Na montagem de grelhas com parafusos, para calcular a dimensão do orifício livre, deverão ser diminuídos 5 mm, tanto no comprimento como na altura à dimensão nominal da grelha. Assim para uma grelha com 500 x 300, o orifício deverá ser de 495 x 295.

Dimensões da alheta

O comprimento máximo da alheta é de 490 mm, no caso em que a alheta supere a dita dimensão serão adicionados os reforços que sejam necessários, para que a alheta nunca supere a medida anteriormente mencionada.

Grelha com registo de regulação

Accionamento da regulação pela frente com uma chave de parafusos.

Quadro porta-filtros

A pedido, a grelha pode integrar um quadro porta-filtros, com malha de protecção. (Filtro não incluído). Estes quadros portafiltros são os únicos utilizáveis nas grelhas 20-45-H-FF ou 20-45-V-FF, não se podendo utilizar os aros metálicos de montagem MM.

Identificação

Em todas as descrições de dimensão das grelhas, será sempre entendido que a primeira dimensão é o comprimento e a segunda a altura. L x H é a dimensão do orifício livre. Quando a grelha não incorpora aro metálico de montagem e está preparada para aparafusar, a dimensão do orifício será de L-5 mm x H-5 mm, excepto no modelo FF (porta-filtros), que será L+5 mm x H+5 mm.

Tabela de selecção (grelhas de retorno)

	2	D. mm	200 x 100	250 x 100	300 x 100 200 x 150			400 x 150	400 x 200	450 x 200	300 x 300	500 x 200 400 x 250 350 x 300	600 x 200	600 x 250	1000 x 200 800 x 250 600 x 300	1000 x 250 800 x 300 600 x 400	1000 x 300 750 x 400	1200 x 300 900 x 400 700 x 500 600 x 600	
m 3 n	1/5	A,	0,0076	0,0098	0,0121	0,0166	0,0217	0,0058	0,0345	0,0404	0.0416	0,0470	0,050	0,0721	0,0915	0,1173	0,1462	0,1759	┨
50	13,9	V _k P _s NR	1,8 3,5 12	1,4 2,1 7	1,1 1,5	0,8 0,8	Q6 Q5	Q.5 Q.3											1
60	16,7	V _k P _s	2,2 5,0 17	1,7 3,1 12	1,4 2,1 7	1,0 1,1	Q8 Q7	Q6 Q4	Q5 Q3										1
70	19,4	V _k	2,5 6,8	20 42	1,6 2,8	1,2 1,5	Q9 1,0	Q8 Q6	0,6 0,4	Q5 Q2									1
80	22,2	NR V _k P _a	21 29 89	16 23 55	11 1,8 3,7	1,3 2,0	1,0 1,3	Q9 Q8	Q,6 Q,5	Q6 Q3	Q5 Q2								1
90	25,0	NR V _e P. NR	3,3 11,3	19 2,6 7,0	15 21 47	1,5 2,5	1,2 1,6	1,0 1,0	0,7 0,6	Q6 Q4	Q6 Q2	Q5 Q2							
100	27,8	V _k	36 13,9	22 2,8 8,6	18 2,3 5,8	11 1,7 3,1	7 1,3 2,0	1,1 1,2	Q8 Q8	Q.7 Q,5	Q7 Q3	0,6 0,3	0,5 0,2						
150	41,7	NR V _k P _s	30	4,3 19,3	3,4 13,1	2,5 7,0	9 1,9 4,5	1,5 2,8	1,2 1,7	1,0 1,0	1,0 Q,7	0,9 0,6	0,7 0,4	0,6 0,2	0,5 0,2				
200	55,6	NŘ V _k P _s		36	31 4,6 23,2	3,3 12,4	20 26 81	14 22 49	9 1,6 3,0	1,4	1,3 1,2	1,2	1,0 0,8	-12 0,8 0,4	-17 Q6 Q3	Q5 Q2			-
250	69,4	V _k			39	4,2 19,4	32 12,6	22 2,7 7,7	17 20 47	11 1,7 2,9	7 1,7 1,9	1,5 1,7	1,2 1,2	1,0 0,7	Q8 Q4	Q6 Q2	0,5 0,2		
300	83,3	NŘ V _k P _a				38	33 3,8 18,2	3,2 11,0	22 2,4 6,8	17 2,1 4,1	13 20 28	11 1,8 2,4	7 1,5 1,7	1,2 0,9	Q9 Q6	Q7 Q4	0,6 0,2	Q5 Q1	
400	111,1	NR V _k P _k					38	4,3 19,6	3,2 12,1	22 28 7,3	17 27 49	16 2,4 4,4	12 2,0 3,0	1,5 1,7	1,2 1,1	Q9 Q6	Q8 Q4	Q6 Q2	
500	138,9	NR V _k						40	35 4,0 18,9	29 3,4 11,5	25 3,3 7,7	3,0 6,8	20 2,5 4,7	13 1,9 2,6	9 1,5 1,7	1,2 1,0	0,9 0,6	Q8 Q4	10
600	166,7	P.R V. P.							41	35 4,1 16,5	31 4,0 11,1	29 3,5 9,8	25 3,0 6,8	19 2,3 3,8	15 1,8 2,5	9 1,4 1,4	1,1 Q9	Q9 Q5	NR.
700	194,4	NR V _k P.							ļ	40	36 4,7 15,1	34 4,1 13,3	30 3,5 9,3	24 2,7 5,2	19 2,1 3,4	13 1,7 1,9	1,3 1,2	1,1 Q7	-
800	222,2	NŘ V,		Si	mbolo	gia:					40	38 4,7 17,4	34 4,0 12,1	28 3,1 6,7	23 24 44	17 1,9 2,5	12 1,5 1,6	1,3 Q9	
900	250,0	P.R NR			V = Vel P = Pre	locidade e essão esta ea efectiva	itica em F					42	38 4,5 15,3	31 3,5 8,5	27 2,7 5,6	21 21 32	16 1,7 2,0	10 1,4 1,2	- 25
1000	277,8	P.R NR			^ - ^/5	a electiva	emm						41	34 3,9 10,5	30 3,0 6,9	24 2,4 4,0	19 1,9 2,5	13 1,6 1,4	NR 10
1500	416,7	P.R												37	33 4,6 15,5	27 3,6 8,9	22 2,8 5,6	16 24 32	
2000	555,6	P.R NR		NI/	OTA:										43	37 4,7 15,8	32 3,8 10,0	26 32 58	
3000	833,3	P. NR				de seleçã	io basela-:	se em ens	alos reals	de labora e ISO 513	tório de 5 e 3741					45	40	34 4,7 13,0	25
4000	1111,1			_ •		GO HOITI	20 100 0	LIFICINE	100.710)	130 313	J C 0/4/.							44 6,3	ŝ
5000	1388,9																	23,0 52 7,9	-
		P, NR																36,0 58	

Tipos: 20-45-H, 20-45-H-O, 20-45-V, 20-45-V-O, 20-45-H-FF, 20-45-V-FF, 21-45-H, 21-45-V, 21-45-H-O, 21-45-V-O

Exemplo de seleção

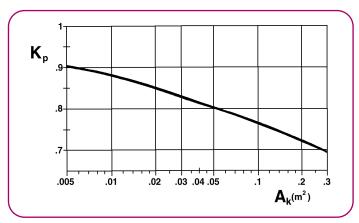
Caso 1. Montagem de grelha em parede, com conduta.

Necessidades requeridas

Caudal de ar de extracção	300 m ³ /h
Aplicação	Escritórios
Nível sonoro requerido	Inferior a 25 NR
Perda de carga admissível	Inferior a 5 Pa
Velocidade efectiva máxima	3 m/s

Solução:

Mediante a tabela de seleção de grelhas de retorno obtémse:


Q (Caudal de ar)	300 m ³ /h (ou 83,3 l/s)
V _k (Velocidade efectiva)	2,1 m/s
NR (Nível sonoro)	
P (Pressão estática)	4.1 Pa

Grelha modelo 20-45-H de 600x150, 450 x 200 ou 350 x 250

Os dados obtidos ajustam-se às necessidades requeridas.

Caso 2. Montagem de grelha em parede, sem conduta (Aspiração Livre).

Voltando ao exemplo anterior, supondo que a grelha não está ligada à conduta, deverá obte-se o factor de correcção (kp) da figura seguinte:

Conhecendo a área efectiva (A,) da grelha e a pressão estática em parede (P), apresentadas na tabela de seleção, resulta:

$$A = 0.0404 \text{ m}^2$$

$$K_p = 0.81$$

 $P_s = 4.1 Pa$

$$P_s = 4.1 \text{ Pa}$$

 $P_s = P_s \cdot K_p$ $P_s = 4.1 \cdot 0.81 = 3.32 \text{ Pa}$

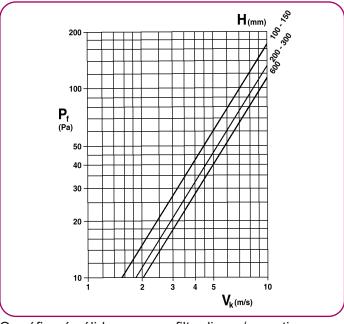
Caso 3. Montagem de grelha em parede, sem conduta, com caixilho porta-filtros e filtro.

Neste caso concreto (grelhas 20-45-H-FF e 20-45-V-FF), podem ocorrer duas variantes:

- 3.a. Que a grelha tenha caixilho porta-filtros mas não tenha incorporado o filtro. Então, a perda de carga e o procedimento de selecção será idêntico ao do Caso 2, como se se tratasse de uma grelha normal de extracção.
- 3.b. Que a grelha tenha incorporados o caixilho porta-filtros e filtro.

Tomando como base o exemplo do Caso 1 e a correcção do Caso 2, deverá obter-se a velocidade efectiva (V,) da grelha, partindo da tabela de seleção:

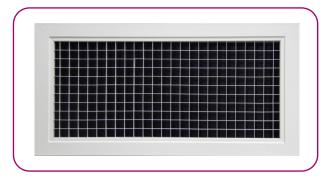
$$A_k = 0.0404 \text{ m}$$
 $V_k = 2.1 \text{ m/s}$

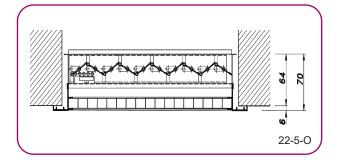

Conhecendo a velocidade efectiva (V_k) e a altura da grelha (H), por meio da seguinte figura, tem-se que a perda de carga do filtro é de 12 Pa aprox. A perda de carga final seria a soma da grelha com a do filtro.

P. (Pressão estática total)

P (Pressão estática em parede)

P, (Pressão estática do filtro)


$$P_{t} = P_{s} + P_{t}$$
 $P_{s} = 3.32 + 12 = 15.32 \text{ Pa}$


O gráfico é válido para um filtro limpo/novo tipo VILEDON, P-15/150, S-EU-2 ou similar. Para registos de regulação de caudal e montagem de aro metálico, ver ACESSÓRIOS E MONTAGEM.

Grelhas de retícula (retorno)

(L x H) (L x H) (L x H) (L + 20) x (H - 20) 24 (L + 28) x (H + 28) 22-5

Descrição

Modelo 22-5, grelha de retícula, construída em alumínio.

Acabamentos

Alumínio anodizado à cor natural. Acabamentos especiais a pedido.

Dimensões instalação com aro de montagem

Na montagem de grelhas com aro metálico, a dimensão do negativo é correspondente à dimensão nominal das grelhas. Assim, uma grelha de 500 x 300, precisará de um orifício com as mesmas dimensões.

Dimensões instalação por parafusos

Na montagem de grelhas com parafusos, para calcular a dimensão do orificio livre, deverão ser diminuídos 5 mm, tanto no comprimento como na altura à dimensão nominal da grelha. Assim, para uma grelha de 500 x 300, o orifício deverá ser de 495 x 295.

Grelha com registo de regulação

Accionamento da regulação pela frente com uma chave de parafusos.

Identificação

Em todas as descrições de dimensão das grelhas, será sempre entendido que a primeira dimensão é o comprimento e a segunda a altura. L x H é a dimensão do orifício livre. Quando a grelha não incorpora aro metálico de montagem e está preparada para aparafusar, a dimensão do orifício será de L-5 mm x H-5 mm.

Tabela de selecção (grelhas de retícula p/retorno)

Dim.	600 1250x800 1000x1000 12 0,9316
Description	1000x1000 12 0,9316
m³/h Vs Ak 0,0314 0,0489 0,1032 0,1769 0,3263 0,4485 0,5901 0,75 200 55,6 V _k 1,8 1,1 0,5 0,3 0,3263 0,4485 0,5901 0,75 250 69,4 V _k 2,2 1,4 0,7 NOTA: 0,5	12 0,9316
200 55,6 V _k 1,8 1,1 0,5 P _s 3,8 1,5 0,3 250 69,4 V _k 2,2 1,4 0,7 P _s 5,9 2,4 0,5 300 83,3 V _k 2,7 1,7 0,8 P _s 8,5 3,5 0,8 350 97,2 V _k 3,1 2,0 0,9 0,5	
P _s 3,8 1,5 0,3	rio de
P _s 5,9 2,4 0,5 2.5 5.0 2.7 1.7 0.8 2.7 1.7 0.8 2.7 2.7 3.5 0.8 0.8 3.5 0.8 3.5 0.8 3.5 0.8 3.5 0.8 3.5 0.8 3.5 0.8 3.5 0.8 3.5 0.8 3.5 0.8 3.5 0.8 0.8 3.5 0.8 3.5 0.8 3.5 0.8 3.5 0.8 3.5 0.8 0.8 3.5 0.8	rio de
300 83,3 V _k 2,7 1,7 0,8 -Este quadro de seleção basela-se em ensalos reals de laborato P _s 8,5 3,5 0,8 -Este quadro de seleção basela-se em ensalos reals de laborato acordo com a norma ISO 5219 (UNE 100.710).	rio de
350 97,2 V _k 3,1 2,0 0,9 0,5 acordo com a norma ISO 5219 (UNE 100.710).	
350 97,2 V _k 3,1 2,0 0,9 0,5	
P 11.5 4.7 1.1 0.4	
400 111,1 V _k 3,5 2,3 1,1 0,8	
P _a 15,0 6,2 1,4 0,5	
450 125,0 V _k 4,0 2,6 1,2 0,7 P _a 19,0 7,8 1,8 0,6	
500 138,9 V _k 4,4 2,8 1,3 0,8 0,4	
300 136,8 V _k 4,4 2,6 1,3 0,6 0,4 P. 23,5 9,7 2,2 0,7 0,2	
600 166,7 V _k 5,3 3,4 1,6 0,9 0,5	
P _a 33,8 13,9 3,1 1,1 0,3	
700 194,4 V _k 6,2 4,0 1,9 1,1 0,6	
P _a 46,0 19,0 4,3 1,4 0,4	
800 222,2 V _k 4,5 2,2 1,3 0,7 P _a 24,8 5,6 1,9 0,6	
900 250,0 V _k 5,1 2,4 1,4 0,8 0,6	
P _a 31,4 7,0 2,4 0,7 0,4	
1000 277,8 V _k 5,7 2,7 1,8 0,9 0,6	
P _a 38,7 8,7 3,0 0,9 0,5	
1100 305,6 V _k 3,0 1,7 0,9 0,7 10.5 3.6 1,1 0.6	
1200 333,3 V _k 3,2 1,9 1,0 0,7	
P _n 12,5 4,3 1,3 0,7	
1300 361,1 V _k 3,5 2,0 1,1 0,8 0,6	
P _s 14,7 5,0 1,5 0,8 0,4 1500 416,7 V, 4,0 2,4 1,3 0,9 0,7	
1500 416,7 V _k 4,0 2,4 1,3 0,9 0,7 P _a 19,8 6,7 2,0 1,0 0,6	
1750 486,1 V _k 4,7 2,7 1,5 1,1 0,8	
P _a 26,6 9,1 2,7 1,4 0,8	
2000 555,6 V _k 5,4 3,1 1,7 1,2 0,9 0,1	
P _a 34,8 11,8 3,5 1,8 1,1 0,7	_
2500 694,4 V _k 3,9 2,1 1,5 1,2 0,6 18,5 5,4 2,9 1,7 1,0	
3000 833,3 V _k 4,7 2,6 1,9 1,4 1,1	_
P. 28,6 7,8 4,1 2,4 1,5	1,0
3500 972,2 V, 5,5 3,0 2,2 1,6 1,3	
P _n 36,2 10,7 5,6 3,3 2,0	
4000 1111,1 V _k 3,4 2,5 1,9 1,5 P _e 13,9 7,4 4,3 2,6	
4500 1250,0 V _k 3,8 2,8 2,1 1,7	
P _a Simbologia: 17,6 9,3 5,4 3,3	
5000 1388,9 V _k V _k = Velocidade efectiva em m/s 4,3 3,1 2,4 1,6	
P _a P = Pressão estática em Pa 21,7 11,0 0,0 4,1	
6000 1686,7 V _k A _k = Area efectiva em m ² 5,1 3,7 2,8 2,2 P _k 31,3 16,6 9,6 5,6	
7000 1944,4 V _k 4,3 3,3 2,6	
P 22,6 13,0 8,0	

Tipo: 22-5

Exemplo de seleção

Montagem de grelha para extracção de ar, situada no tecto, sem registo de regulação.

Necessidades requeridas

Caudal de ar de extracção Aplicação Perda de carga requerida	600 m³/l Biblioteca Inferior a 5 Pa
Velocidade efectiva máxima Solução:	2 m/s
Mediante a tabela de seleção de grelha obtém-se:	as de retícula para retorno

Q (Caudal de ar) ______ 600 m³/h (ou 166,7 l/s) V $_{\rm k}$ (Velocidade efectiva) _____ 1,6 m/s P $_{\rm s}$ (Pressão estática) _____ 3,1 Pa

Grelha modelo 22-5 de 600 x 200, 400 x 300 ou 350 x 350

Os dados obtidos ajustam-se às necessidades requeridas.

Dimensões especiais

Além das dimensões normalizadas indicadas na tabela de seleção, esta grelha pode adaptar-se às modulações de tectos falsos, substituindo facilmente uma das placas. $(600 \times 600, 900 \times 600, 600 \times 300, etc.)$

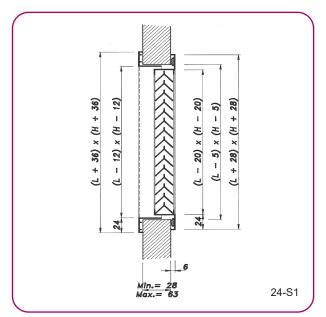
Generalidades

A retícula ou malha cruzada de lâminas encastradas, é constituída por quadrados de 15 x 15 mm.

A sua elevada superfície útil faz com que possa trabalhar com caudais de ar elevados e com uma perda de carga mínima.

O seu design adapta-se perfeitamente à decoração dos elementos de iluminação.

Grelhas de porta (passagem de ar)

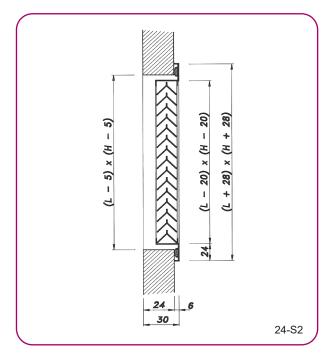


Descrição

Modelo 24-S1, grelha de alumínio com contra-aro. Modelo 24-S2, grelha de alumínio sem contra-aro.

Acabamentos

Alumínio anodizado à cor natural. Acabamentos especiais a pedido.



Dimensões para aparafusar

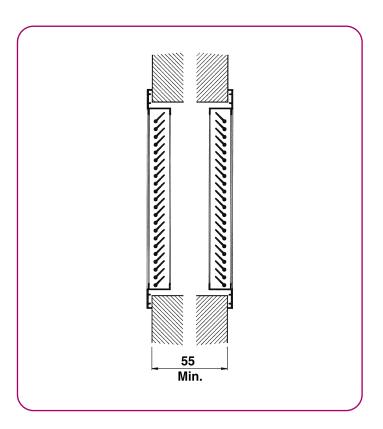
Na montagem sobre porta ou superficies para aparafusar, para calcular a dimensão do orifício livre, deverão ser diminuídos 5 mm, tanto no comprimento como na altura à dimensão nominal da grelha. Assim para uma grelha com 500 x 300, o orifício deverá ser de 495 x 295.

Identificação

Em todas as descrições de dimensão das grelhas, será sempre entendido que a primeira dimensão é o comprimento e a segunda a altura.

Tabela de selecção (grelhas de porta)

		Dim	300x100	400x100	500x150	400x200	500x200	600x200	600x250	600x350	700x400
		Dim. (mm)	200x100	200x200	350x200	300x250	400x250	500x250	500x300	500x400	600x500
	2	(11111)	200X 100	200X200	350X200	300X230	400X230	400x300	300X300	300X400	600X300
m³/h	Vs	Ą	0,0156	0,0208	0,0390	0,0448	0.0560	0.0684	0,0855	0,1218	0,1652
50	13,9	V _k	0,9	0,7	0,4	0,0440	0,000	0,0004	0,0000	0,1210	0,1002
	.0,5	P.	3,6	2,0	0,6						
60	16,7	V _k	1,1	0,8	0,4	-					
		P.	5,1	2,9	0,8						
70	10.4					0.4					
70	19,4	V _k	1,2 7,0	0,9 3,9	0,5 1,1	0,8					
80	22.2						0,4				
00	22,2	V _k	1,4	1,1	0,6	0,5	0,7				
90	25,0	P,	9,1 1,6	5,1 1,2	1,5 0,6	1,1 0,6	0,4				
90	25,0	V _k P _a	11,6	6,5	1,8	1,4	0,4				
							_	0.4			
100	27,8	V _k P _a	1,8 14,3	1,3 8,0	0,7 2,3	0,6 1,7	0,5 1,1	0,4			
120	33,3	V _k	2,1	1,6	0,9	0,7	0,6	0,5	0,4		
		P.	20,5	11,6	3,3	2,5	1,6	1,1	0,7		
140	38,9	V _k	2,5	1,9	1,0	0,9	0,7	0,6	0,5		
		P.	28,0	15,7	4,5	3,4	2,2	1,5	0,9		
160	44,4	V _k		2,1	1,1	1,0	0,8	0,6	0,5		
		P.		20,5	5,8	4,4	2,8	1,9	1,2		
180	50,0	V _k		2,4	1,3	1,1	0,9	0,7	0,6	0,4	
		P.		26,0	7,4	5,6	3,6	2,4	1,5	0,8	
200	55,6	V _k			1,4	1,2	1,0	0,8	0,6	0,5	
		P.			9,1	6,9	4,4	3,0	1,9	0,9	
250	69,4	V _k			1,8	1,6	1,2	1,0	0,8	0,6	0,4
		P.			14,3	10,8	6,9	4,6	3,0	1,5	0,8
300	83,3	V _k			2,1	1,9	1,5	1,2	1,0	0,7	0,5
		P.			20,5	15,6	10,0	6,7	4,3	2,1	1,1
350	97,2	V _k			2,5	2,2	1,7	1,4	1,1	8,0	0,6
		Р,			28,0	21,2	13,6	9,1	5,8	2,9	1,6
400	111,1	V _k				2,5	2,0	1,6	1,3	0,9	0,7
		P.				27,7	17,7	11,9	7,6	3,7	2,0
500	138,9	V _k					2,5	2,0	1,6	1,1	0,8
		P.					27,7	18,6	11,9	5,9	3,2
600	166,7	V _k						2,4	1,9	1,4	1,0
		P.						26,7	17,1	8,4	4,6
700	194,4	V _k							2,3	1,6	1,2
		P,		Simbole	ogia:				23,3	11,5	6,2
800	222,2	V _k							2,6	1,8	1,3
		P,			elocidade efec ressão estática				30,4	15,0	8,1
900	250,0	V _k			rea efectiva er					2,1	1,5
		P.								19,0	10,3
1000	277,8	V _k								2,3	1,7
		P,								23,4	12,7
1200	333,3	V _k		NOTA:							2,0
		P,									18,3
1400	388,9	V _k		 Esta tabela de seleção baseia-se em ensaios reais de laboratório de acordo com a norma ISO 5219 (UNE 100.710). 							2,4
		P,		and the same to be say,							24,9
1600	444,4	V _k									2,7
		P,									32,6


Tipos: 24-S1, 24-S2

Exemplo de selecção

Generalidades

- Este tipo de grelhas é fornecido sempre com bastidor perfurado para aparafusar.
- A disposição das alhetas S-24 em «V» invertido, impede a visão através dela em portas, divisórias, etc.
- A velocidade de passagem recomendável para a sua seleção é de 0,75 a 1,25 m/s.
- Na grelha 24-S1 (com contra-aro) recomendase a sua instalação em estruturas até 55 mm de espessura máxima. Para uma espessura superior , é recomendável a utilização de duas grelhas 20-45-H conforme se demonstra no detalhe seguinte:

Dados:

Montagem de grelhas em porta, para passagem de ar

Necessidades requeridas

Caudal de passagem de ar	140 m ³ /h
Aplicação	Escritórios gerais
Perda de carga requerida	Inferior a 8 Pa
Velocidade máxima de passagem	1 m/s

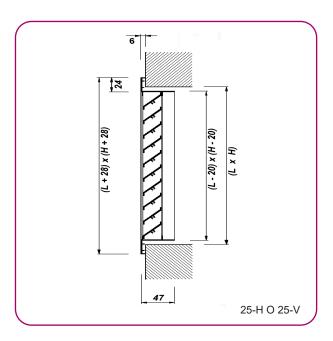
Solução:

Mediante a tabela de seleção de grelhas de passagem obtémse:
Q (Caudal de ar) ______ 140 m³/h (ou 38,9 l/s)
V_k (Velocidade efectiva) ______ 1 m/s
P_s (Pressão estática) ______ 4,5 Pa

Grelha modelo 24-S1 ou 24-S2 de 500 x 150 ou 350 x 200

Os dados obtidos ajustam- se às necessidades requeridas.

Grelhas de tomada de ar exterior ou expulsão de ar



Descrição

Modelo 25, grelha de alumínio.

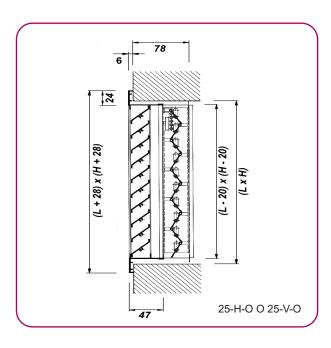
Acabamentos

Alumínio anodizado à cor natural. Acabamentos especiais a pedido.

Dimensões instalação com aro de montagem

Na montagem de grelhas sobre aro de montagem metálico, a dimensão do negativo é correspondente à dimensão nominal das grelhas. Assim, uma grelha de 500 x 300, precisará de um orifício com as mesmas dimensões.

Dimensões instalação por parafusos


Na montagem sobre estruturas para aparafusar, para calcular a dimensão do orifício livre, deverão ser diminuídos 5 mm, tanto no comprimento como na altura, a dimensão nominal da grelha. Assim para uma grelha com 500 x 300, o orifício deverá ser de 495 x 295.

Grelha com registo de regulação

Accionamento da regulação pela frente com uma chave de parafusos.

Identificação

Em todas as descrições de dimensão das grelhas, será sempre entendido que a primeira dimensão é o comprimento e a segunda a altura. L x H é a dimensão do orifício livre. Quando a grelha não incorpora aro metálico de montagem e está preparada para aparafusar, a dimensão do orifício será de L-5 mm x H-5 mm.
A pedido, pode ser fornecida rede anti-insectos.

Tabela de selecção (de tomada de ar exterior ou expulsão de ar)

	ı		200x100	250x100	300x100	400x100	500x100	600x100	500x150	600x150	300x300	800x150	600x200	800x200	1000x200	1000x300	900x400	1000600
		Dim.(mm)	Lookioo	Zooxioo	200x150	200x200	250x200	400x150	400x200	450x200	осолосо	COUNTRY	400x300	400x400	800x250	750x400	600x600	
-	2	2, 2,	0.0054		0.0004	0.0400	0.0405	300x200	300x250			0.0400		0.0040		0.4000	0.4004	
(m³/h) 50	(l/s) 13,9	A _{eff} (m²) V _{eff} (m/s)	0,0054 2,6	0,0068 2,1	0,0081 1,7	0,0108 1,3	0,0135 1,0	0,0215	0,0269	0,0323	0,0360	0,0480	0,0480	0,0640	0,0800	0,1380	0,1801	0,3002
		p _s (Pa)	11 24	7	5	3 <20	2											
60	16,7	dB(A) V _{eff} (m/s)	3,1	<20 2,5	<20 2,1	1,5	<20 1,2											
		p _s (Pa) dB(A)	15 29	10 24	7 20	4 14	2 9										1	
70	19,4	V _{eff} (m/s)	3,6	2,9	2,4	1,8	1,4	0,9										
		p _s (Pa) dB(A)	21 33	13 28	9 24	5 <20	3 <20	1 <20										
80	22,2	V _{eff} (m/s)	4,1	3,3	2,7	2,1	1,6	1,0										
		p _s (Pa) dB(A)	27 36	18 31	12 27	7 21	4 <20	2 <20										
90	25,0	V _{eff} (m/s) p _s (Pa)	4,6 35	3,7 22	3,1 15	2,3 9	1,9 6	1,2 2	0,9									
		dB(A)	39	34	30	24	<20	<20	<20									
100	27,8	V _{eff} (m/s) p _s (Pa)	5,1 43	4,1 27	3,4 19	2,6 11	2,1 7	1,3 3	1,0 2									
		dB(A)	41	37	33	27	22	<20	<20									
160	44,4	V _{eff} (m/s) p _s (Pa)	8,2 110	6,6 70	5,5 49	4,1 27	3,3 18	2,1 7	1,7 4	1,4 3	1,2 2							
200	55,6	dB(A)	53	48 8,2	6,9	38 5,1	34 4,1	24 2,6	<20 2,1	<20 1,7	<20 1,5							
200	00,0	V _{eff} (m/s) p _s (Pa)		110	76	43	27	11	7	5	4							
250	69,4	dB(A) V _{eff} (m/s)		54	50 8,6	6,4	39 5,1	29 3,2	24	21	<20 1,9	1,4	1,4	1,1				
250	00,4	p _* (Pa)			119	67	43	17	11	8	6	3	3	2				
300	83,3	dB(A) V _{eff} (m/s)			55	49 7,7	45 6,2	35 3,9	30 3,1	26 2,6	2,3	<20 1,7	<20 1,7	<20 1,3	1,0			
	,-	p _* (Pa)				96	62	24	16	11	9	5	5	3	2			
400	111,1	dB(A) V _{eff} (m/s)				54	49 8,2	39 5,2	34 4,1	31 3,4	28 3,1	22 2,3	22 2,3	<20 1,7	<20 1,4			
		p _* (Pa)					110 56	43 46	28 42	19 38	15 35	9 29	9 29	5 23	3 <20			
500	138,9	dB(A) V _{eff} (m/s)					30	6,5	5,2	4,3	3,9	2,9	2,9	2,2	1,7	1,0		
		p _s (Pa) dB(A)						68 52	43 47	30 43	24 41	14 35	14 35	8 29	5 24	2 <20		
600	166,7	V _{eff} (m/s)							6,2	5,2	4,6	3,5	3,5	2,6	2,1	1,2		
		p _s (Pa) dB(A)							62 52	43 48	35 45	20 39	20 39	11 33	7 28	2 <20		
700	194,4	V _{eff} (m/s)								6,0 59	5,4 47	4,1 27	4,1 27	3,0 15	2,4 10	1,4 3	1,1 2	
		p _s (Pa) dB(A)		Simbolo	ogia:					52	49	43	43	37	32	21	<20	
800	222,2	V _{eff} (m/s) p _s (Pa)		V. = Valor	idade efec	tiva em m/s				6,9 77	6,2 62	4,6 35	4,6 35	3,5 20	2,8 13	1,6 4	1,2 2	
		dB(A)			são estátic		•			55	53	46	46	40	36	24	<20	
900	250,0	V _{eff} (m/s) p _s (Pa)		A _k = Área	efectiva en	n m²					6,9 78	5,2 44	5,2 44	3,9 25	3,1 16	1,8 5	1,4 3	
1000	977.0	dB(A)									55	49	49	43	38 3,5	27 2,0	21	
1000	277,8	V _{eff} (m/s) p _s (Pa)										5,8 54	5,8 54	4,3 31	20	7	1,5 4	
1600	444,4	dB(A) V _{eff} (m/s)										52	52	46	41 5,6	29 3,2	24 2,5	1,5
1300	777,7	p _s (Pa)													50	17	10	4
2000	555,6	dB(A) V _{-rr} (m/s)		NOTA:											53	41 4,0	35 3,1	25 1,9
2000	220,0	p, (Pa)														26	15	6
3000	833,3	dB(A) V _{eff} (m/s)							s de labora	tório de ao	ordo com a	s nomas				47	41 4,6	30 2,8
		p, (Pa)		ISO 5219	(UNE 100.)	710) e ISO	5135 e 37	41.									35	12
3500	972,2	dB(A) V _{eff} (m/s)															51 5,4	40 3,2
		p _s (Pa) dB(A)															47 55	17 44
4000	1111,1	V _{eff} (m/s)																3,7
		p _s (Pa) dB(A)																22 47
		p _s (Pa) dB(A)																

Tipos: 25-H, 25-V, 25-H-O, 25-V-O

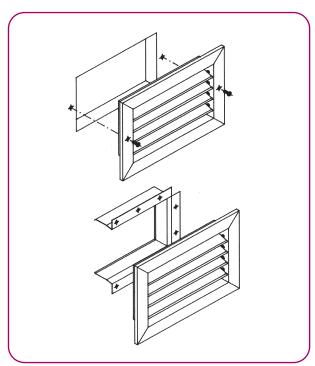
Exemplo de selecção

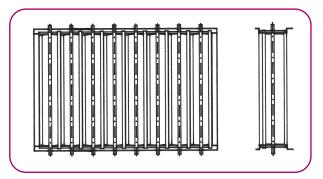
Dados

Montagem de grelha na parede, para tomada de ar exterior, sem conduta

Necessidades requeridas

Caudal de ar	400 m ³ /h
Aplicação	Armazém
Nível sonoro requerido	Inferior a 25 NR
Perda de carga requerida	Inferior a 5 Pa
Velocidade máxima de passagem	2 m/s
Solução	
Mediante a tabela de seleção de grelhas do	tipo 25 obtém-se:
Q (Caudal de ar)	400 m ³ /h (ou 111,1 l/s)
V, (Velocidade efectiva)	1,7 m/s
NR (Nível sonoro)	22
P _s (Pressão estática)	4,5 Pa


Grelha modelo 25-H de 800 x 200, 600 x 250 ou 500 x 300.


Os dados obtidos ajustam-se às necessidades requeridas.

Acessórios e montagem

Tipo MM

Aro metálico para montagem da grelha.

Fixação por parafusos

Colocando directamente a grelha no orifício, aparafusar directamente sobre a estrutura ou conduta de chapa, etc. Para montagem em condutas de fibra, é recomendável a utilização do quadro metálico de montagem MM.

Fixação sobre aro de montagem

Uma vez introduzido o aro metálico no orifício (o aro metálico incorpora patilhas de fixação), colocar a grelha. Pressionando suavemente, por meio dos grampos de pressão, a grelha fica perfeitamente fixa ao aro de montagem. Nota: o aro de montagem é sempre fornecido com perfurações em todo o seu perímetro, oferecendo a opção de montagem com parafusos.

Este procedimento é mais útil para as grelhas de grande dimensão ou de peso elevado e recomendável para montagem no tecto.

Registo de regulação 29-O

Os registos de regulação 29-0 são construídas em chapa de aço galvanizado, com alhetas opostas. São aplicáveis a qualquer tipo de grelha (excepto porta-filtros e grelhas de porta). A sua regulação é facilmente realizada a partir do exterior com uma chave de parafusos.

O registo de regulação 29-O modifica logicamente os valores de nível sonoro e de perda de carga expressos nas tabelas de seleção.

No quadro seguinte são detalhadas, para uma determinada V_k , os factores de correcção a aplicar ao nível sonoro (NR) e à perda de carga (P_s) dependendo da percentagem de abertura do registo (min, 1/2, máx):

ABERTURA	P_s	NR
max	x 1,3	+ 2
1/2	x 4,0	+ 12
min	x 27,5	+ 24

Existe também um factor de correcção no que se refere ao nível sonoro em função do $A_{\rm k}$, como se detalha no quadro seguinte:

Ak (m²)	0,01	0,02	0,03	0,05	0,1	0,2
NR	-5,2	-1,9	0	+2,4	+5,8	+9,1

Dimensões normalizadas das grelhas (em mm)

Comprimento (L) 200, 250, 300, 350, 400, 450, 500, 600,

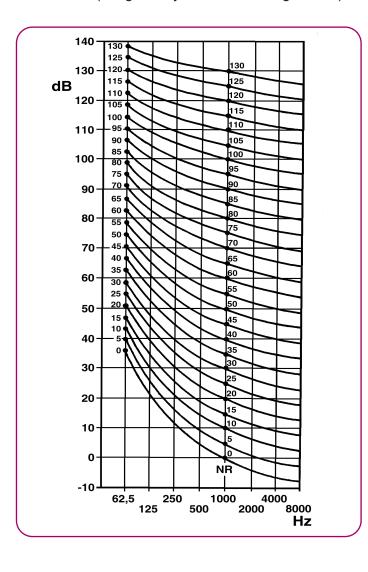
700, 800, 900, 1000

Altura (H) 100, 150, 200, 250, 300, 350, 400, 450,

500, 600, 700, 800, 900, 1000

A pedido podem ser fabricadas dimensões especiais.

AD


Dados de interesse geral

Niveles sonoros, curvas NR

A continuación se detallan los niveles sonoros recomendables para cada tipo de instalación.

Local	NR
Estudios de grabación/televisión	. 15
Salas de conciertos, quirófanos, bibliotecas	. 20
Salas de conferencias, iglesias, residencias, hote	les,
oficinas privadas25	-30
Bancos, cafeterías, teatros, escuelas, restaurante	s,
edificios públicos	-40
Supermercados, grandes almacenes, gimnasios.	
	-55
Tiendas, industria ligera	65

El sistema NR que gradualmente va supliendo al sistema NC, tiene la ventaja de incluir correcciones que se aplican a los criterios especificados, teniendo en cuenta el carácter del ruido, su duración y su localización (ver gráfico y correcciones siguientes).

uБ
5 5 +5 +5
5
0
+5
+10
+15

Velocidades recomendadas para unidades de distribuição de ar

Estes valores são aproximados e referem-se a instalações de conforto, uma vez que em utilizações industriais estas velocidades podem ser maiores.

Em qualquer caso, trata- se de dados orientadores.

	Tipo de unidade terminal	Utilização	(m/s)
	Grelhas de deflexão simples e dupla	insuflação	2-3,5
	Grelhas de alhetas fixas a 45°	retorno	1,5-2,5
	Grelhas porta-filtros	retorno	1,5-2,5
Grelhas para conduta circular em deflexão simples e dupla insuflação			2-4
	Grelhas para conduta circular em deflexão simples	retorno	1,5-3
	Grelhas de retícula	retorno	2-3
	Grelhas de porta	passagem de ar	0,75-1,25
	Grelhas de expulsão ou tomada de ar	expulsão ou tomad	la 2,5-4,5
	Grelhas lineares, parede ou tecto	insuflação	2-3,5
	Grelhas lineares, parede ou tecto	retorno	1,5-2,5
	Grelhas lineares de solo	insuflação	1,5-2,5
	Grelhas lineares de solo	retorno	1,5-2,5
	Grelhas lineares para fancoils e indutores	insuflação	2,5-4
	Grelhas lineares para fancoils e indutores	retorno	1,5-2,5
	Grelhas lineares para cortinas de ar	insuflação	3-6
	Grelhas lineares para cortinas de ar	retorno	2,5-4
	Difusores circulares cones fixos	insuflação	2-3
	Difusores circulares cones móveis	insuflação	2,5-4,5
	Bocas de extracção	retorno	1-1,5
	Difusores esféricos	insuflação	3-9
	Difusores quadrados e rectangulares	insuflação	2-3,5
	Difusores lineares	insuflação	2,5-4,5
	Difusores lineares	retorno	1,5-2,5

ESTE CATÁLOGO É PROPRIEDADE INTELECTUAL.

Fica proibida a reprodução parcial ou total do seu conteúdo sem autorização expressa e adequada da KOOLAIR, S.A.

KOOLAIR, S.A.

Calle Urano, 26 Poligono industrial nº 2 – La Fuensanta 28936 Móstoles - Madrid - (España)

Tel: +34 91 645 00 33 e-mail: info@koolair.com