

serie

40.3

Drallauslässe mit feststehenden Lamellen

www.koolair.com

Serie 40.3

1

INHALTSVERZEICHNIS

Einführung	2
Typen und Abmessungen	5
Technische Daten. Auswahltabellen	12
Typenschlüssel	19

Drallauslaß mit feststehenden Lamellen

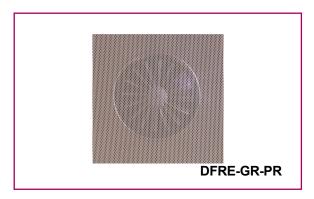
DFRE

Drallauslaß DFRE

Drallauslaß mit feststehenden Lamellen, eingebaut in eine quadratische Platte zum Einpassen in Raster- oder Gipskartondecken. Vollständig aus RAL 9010 weiß beschichtetem Stahlblech gefertigt. Sonderausführungen auf Anfrage. Der Anschlusskasten enthält im Anschlußstutzen eine handbetätigte Drosselklappe. Die Anschlusskästen können auf Anfrage innen mit Dämmmaterial ausgekleidet geliefert werden.

Drallauslaß DFRE-C

Drallauslaß mit feststehenden Lamellen, eingebaut in eine runde Platte zum Einpassen in Raster- oder Gipskartondecken. Vollständig aus RAL 9010 weiß beschichtetem Stahlblech gefertigt. Sonderausführungen auf Anfrage.


Der Anschlusskasten enthält im Anschlußstutzen eine vom Raum aus zugängliche Drosselklappe. Auf Wunsch können die Anschlusskästen innen mit Dämmmaterial ausgekleidet werden.

Drallauslaß DFRE-GR

Drallauslaß mit feststehenden Lamellen, eingebaut in eine runde Platte, zum Einpassen in Raster- oder Gipskartondecken. Vollständig aus RAL 9010 weiß beschichtetem Stahlblech gefertigt. Sonderausführungen auf Anfrage.

Der Anschlusskasten enthält im Anschlußstutzen eine vom Raum aus zugängliche Drosselklappe. Die Anschlusskästen können auf Anfrage innen mit Dämmmaterial ausgekleidet werden.

Drallauslaß DFRE-GR-PR

Drallauslaß mit feststehenden Lamellen in ein Lochblech eingepasst. Der Auslaß besteht aus einer mit Dämmmaterial ausgekleideten und mit Drallblechen ausgestatteten Lochblechkassette.

Vollständig aus RAL 9010 weiß beschichtetem Stahlblech gefertigt. Sonderausführungen auf Anfrage.

Der Anschlusskasten enthält im Anschlußstutzen eine handbetätigte Drosselklappe. Die Anschlusskästen können auf Anfrage innen mit Dämmmaterial ausgekleidet werden.

Drallauslaß mit feststehenden gekrümmten Lamellen

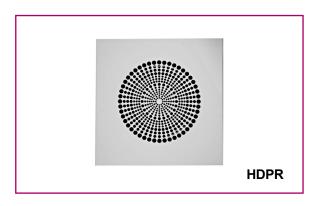
DAFC

Drallauslaß DAFC

Drallauslaß mit feststehenden gekrümmten Lamellen, eingebaut in eine quadratische Platte zum Einpassen in Raster-oder Gipskartondecken.

Vollständig aus RAL 9010 weiß beschichtetem Stahlblech gefertigt. Sonderausführungen auf Anfrage.

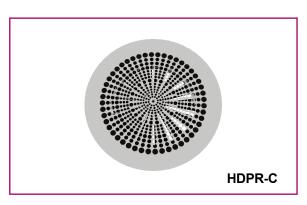
Der runde Anschlusskasten enthält im Anschlußstutzen eine handbetätigte Drosselklappe. Die Anschlusskästen können auf Wunsch innen mit Dämmmaterial ausgekleidet werden.



Drallauslaß DAFC-C

Drallauslaß mit feststehenden gekrümmten Lamellen, eingebaut in eine runde Platte zum Einpassen in Raster- oder Gipskartondecken.

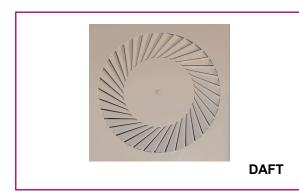
Vollständig aus RAL 9010 weiß beschichtetem Stahlblech gefertigt. Sonderausführungen auf Anfrage.


Der runde Anschlusskasten enthält im Anschlußstutzen eine vom Raum aus zugängliche Drosselklappe. Die Anschlusskästen können auf Anfrage innen mit Dämmmaterial ausgekleidet werden.

Drallauslaß HDPR

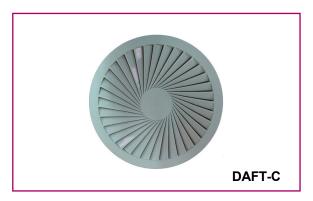
Drallauslaß mit feststehenden Lamellen, Typ HDPR, integriert in eine Lochblechplatte in Sonderbauart. Enthält einen angebauten runden Anschlusskasten und Drosselklappe.

Gefertigt aus Stahlblech. Ausführung mit Beschichtung in RAL 9010, weiß. Der Anschlusskasten enthält im Anschlußstutzen eine handbetätigte Drosselklappe. Die Anschlusskästen können auf Wunsch innen mit Dämmmaterial ausgekleidet werden.



Drallauslaß HDPR-C

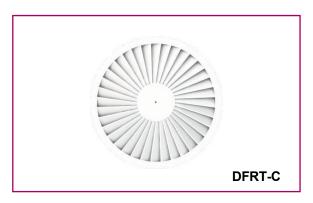
Drallauslaß mit feststehenden Lamellen, Typ HDPR, integriert in eine runde Lochblechplatte in Sonderbauart. Enthält einen angebauten runden Anschlusskasten und Drosselklappe. Gefertigt aus Stahlblech. Ausführung mit Beschichtung in RAL 9010, weiß. Der Anschlusskasten enthält im Anschlußstutzen eine handbetätigte Drosselklappe. Die Anschlusskästen können auf Wunsch innen mit Dämmmaterial ausgekleidet werden.



Drallauslaß mit feststehenden Lamellen

Drallauslaß DAFT

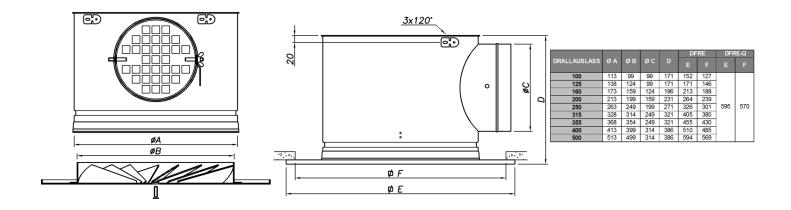
Drallauslaß mit feststehenden Lamellen, Typ DAFT. Enthält einen runden Anschlusskasten und mit vom Raum aus zugänglicher Drosselklappe. Gefertigt aus Stahlblech, in RAL 9010, weiß lackiert.


Drallauslaß DAFT-C

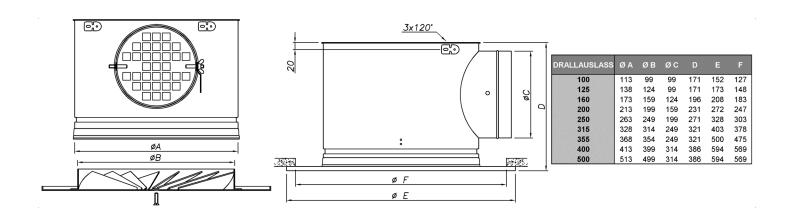
Runder Drallauslaß mit feststehenden Lamellen, Typ DAFT. Enthält einen runden Anschlusskasten und mit vom Raum aus zugänglicher Drosselklappe. Gefertigt aus Stahlblech, in RAL 9010, weiß lackiert.

Drallauslaß DFRT

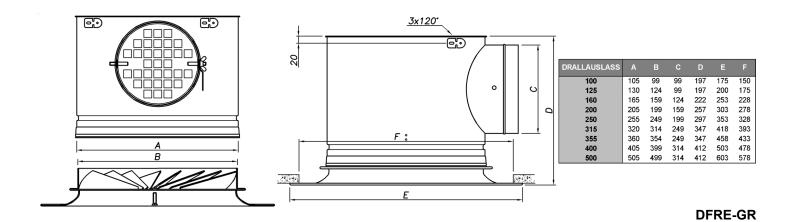
Drallauslaß mit feststehenden Lamellen, Typ DAFT. Enthält einen runden Anschlusskasten und mit vom Raum aus zugänglicher Drosselklappe. Gefertigt aus Stahlblech, in RAL 9010, weiß lackiert.



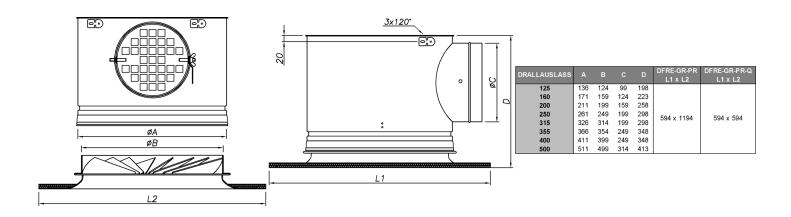
Drallauslaß DFRT-C

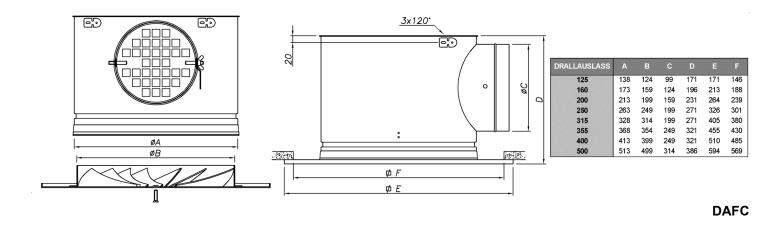

Runder Drallauslaß mit feststehenden Lamellen, Typ DAFT. Enthält einen runden Anschlusskasten und mit vom Raum aus zugänglicher Drosselklappe. Gefertigt aus Stahlblech, in RAL 9010, weiß lackiert.

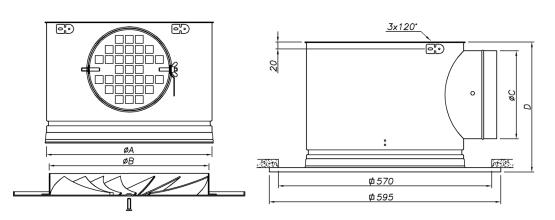
Typen und Abmessungen: DFRE / DFRE-Q



Typen und Abmessungen: DFRE-C

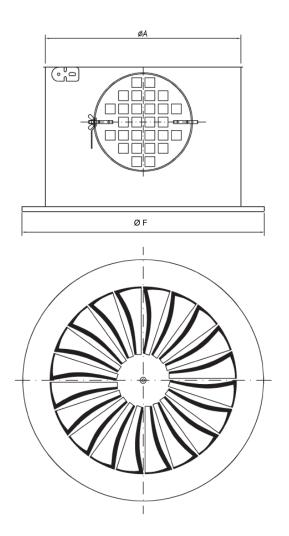

Typen und Abmessungen: DFRE-GR / DFRE-GR-Q

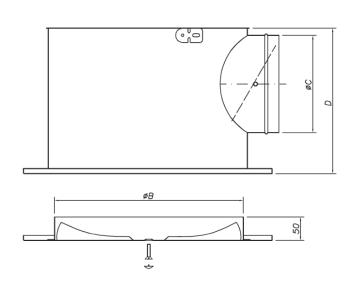




Typen und Abmessungen: DFRE-GR-PR / DFRE-GR-PR-Q

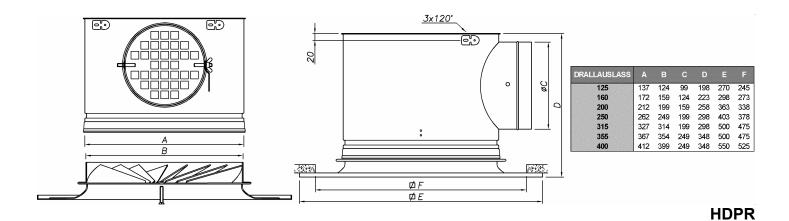
Typen und Abmessungen: DAFC / DAFC-Q

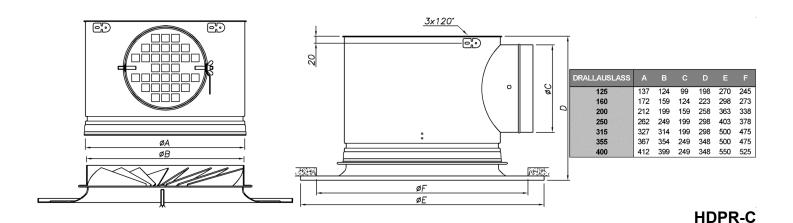


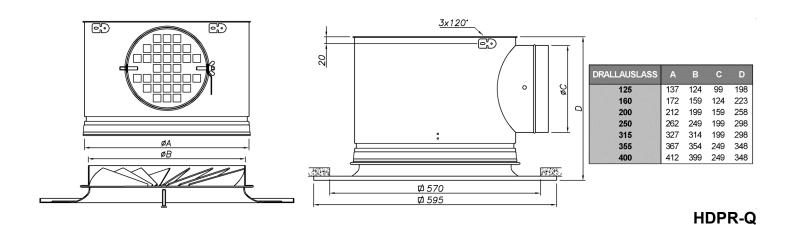

DRALLAUSLASS	Α	В	С	D
125	138	124	99	171
160	173	159	124	196
200	213	199	159	231
250	263	249	199	271
315	328	314	199	271
355	368	354	249	321
400	413	399	249	321
500	513	499	314	386

DAFC-Q

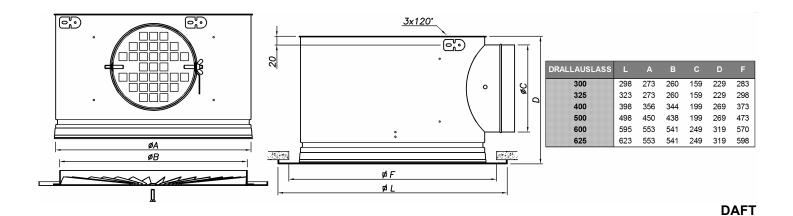
Typen und Abmessungen: DAFC-C

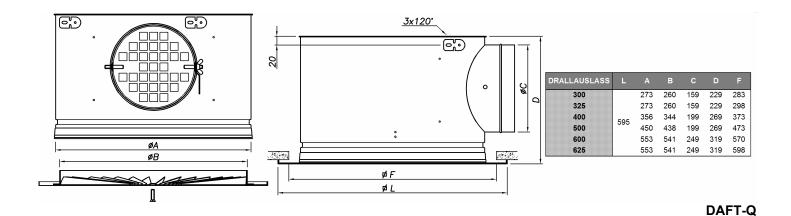


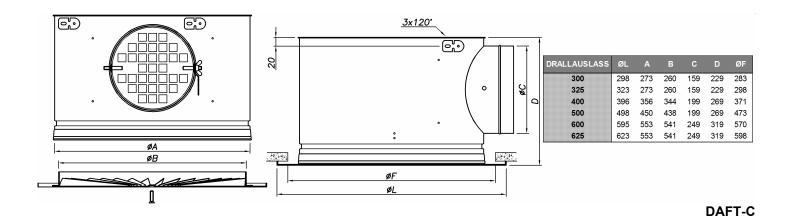

ABMESSUNGEN


TYP	ØΑ	ØВ	ØС	D	ØF
125	136	124	99	170	173
160	171	159	124	195	208
200	211	199	159	230	272
250	261	249	199	270	328
315	326	314	199	270	403
355	366	354	249	320	500
400	411	399	249	320	594
500	511	499	314	385	594

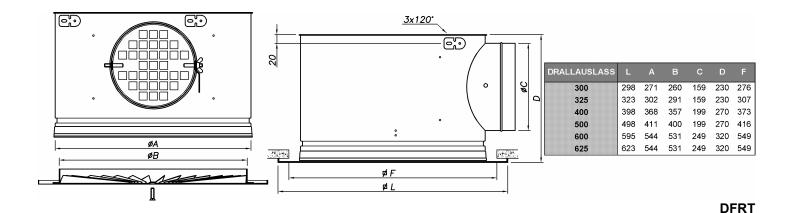
Typen und Abmessungen: HDPR / HDPR-C / HDPR-Q

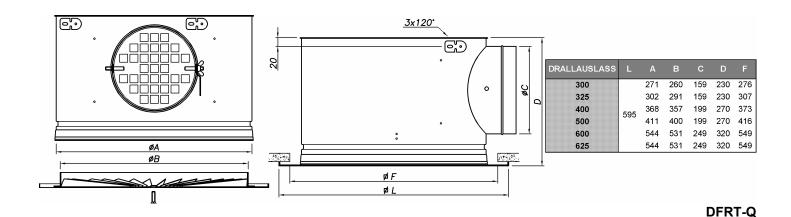


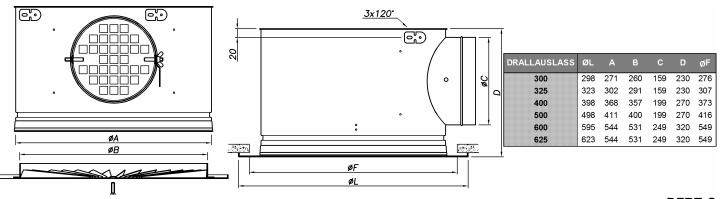




Typen und Abmessungen: DAFT / DAFT-Q / DAFT-C







Typen und Abmessungen: DFRT / DFRT-Q / DFRT-C

DFRT-C

Technische Daten. Auswahltabellen: DFRE/Q/C

0)	Abm. [mm]	100	125	160	200	250	315	355	400	500
[m ³ /h]	[l/s]	A _k [m²]	0,0063	0,0099	0,0123	0,0176	0,0226	0,0330	0,0359	0,0500	0,0618
50	13,9	Х [m]	0,6								
		L _w - dB(A)	33								
		P _t [Pa]	27								
75	20.0	V _k [m/s]	2,2 0,9	0.7							
/5	20,8	X [m] L,, - dB(A)	0,9 44	0,7 27							
		P _t [Pa]	62	25							
		۷ _۴ [m/s]	3,3	2,1							
100	27,8	X [m]	-,-	0,9	0,8						
		$L_w - dB(A)$		35	26						
		P _t [Pa]		45	18						
		V _k [m/s]		2,8	2,3						
200	55,6	X [m]			1,6	1,4	1,2				
		L _w - dB(A)			46 73	32	22 9				
		P _t [Pa] V _k [m/s]			4,5	24 3,2	2,5				
300	83,3	X [m]			4,5	2,1	1,8	1,5			
***	00,0	L _w - dB(A)				43	33	19			
		P _t [Pa]				55	20	6			
		۷ [m/s]				4,7	3,7	2,5			
400	111,1	X [m]				2,7	2,4	2,0	2,2		
		L_w - dB(A)				51	41	27	23		
		P _t [Pa]				98	36	11	8		
500	400.0	V _k [m/s]				6,3	4,9	3,4	3,1		
500	138,9	X [m]					3,0 48	2,5 33	2,7 30		
		L _w - dB(A) P _t [Pa]					56	18	12		
		V _ν [m/s]					6,1	4,2	3,9		
600	166,7	X [m]					3,6	3,0	3,2	2,7	
		L,, - dB(A)					53	38	35	22	
		P, [Pa]					80	26	18	9	
		V _k [m/s]					7,4	5,1	4,6	3,3	
800	222,2	X [m]						4,0	4,3	3,7	2,8
		L _w - dB(A)						46	43	30	22
		P _t [Pa] V _k [m/s]						46 6,7	32 6,2	16 4,4	11 3,6
1000	277,8	X [m]						0,1	5,4	4,6	3,5
1000	,0	L _w - dB(A)							49	36	28
		"P, [Pa]							50	26	17
		Vk [m/s]							7,7	5,6	4,5
1200	333,3	X [m]								5,5	4,2
		$L_w - dB(A)$								41	33
		P _t [Pa]								37	24
1400	388,9	V _k [m/s]								6,7 6,4	5,4 5,0
1700	000,0	L _w - dB(A)								46	38
		P, [Pa]								50	33
		V _k [m/s]								7,8	6,3
1600	444,4	X [m]								7,3	5,7
		$L_w - dB(A)$								49	41
		"P _t [Pa]								66	43
1800	500,0	V _k [m/s]								8,9	7,2
1000	300,0	X [m] L _w - dB(A)									6,4 45
		P _t [Pa]									54
		ν _k [m/s]									8,1
2000	555,6	X [m]									7,1
1		L_w - dB(A)									48
		"P _t [Pa]									67
0000	614.4	V _k [m/s]			ļ						9,0
2200	611,1	X [m]									7,8 50
		$L_w - dB(A)$ $P_t [Pa]$									81
		V, [m/s]									9,9
ь		, k [1175]		L	L	L	L			l	5,5

SYMBOLBEDEUTUNG

A_k Effektiv-Strömungsfläche in m²
V_k Effektiv-Geschwindigkeit in m/s
X Wurfweite in m, bei einer Maximal-geschwindigkeit von 0,25 m/s im Aufenthaltsbereich, △T= 0 K, einer Einbauhöhe von 3 m, unter Berücksichtigung des Coanda-Effektes
Pt Gesamtdruckverlust in Pa Schallleistungspegel in

dB(A)

Technische Daten. Auswahltabellen: DFRE-GR + PL / DFRE-GR-Q + PL

	Q	Größe	100	125	160	200	250	315	355	400	500
(m³/h)	(l/s)	$A_k (m^2)$	0,00770	0,0121	0,0199	0,0311	0,0487	0,0774	0,0984	0,1250	0,1956
30	8,3	V _k (m/s)	1,1								
		X (m)	0,4								
		ΔP_{t} (Pa)	14								
		dB(A)	24								
50	13,9	V _k (m/s)	1,8	1,1							
		X (m)	0,6	0,5							
		$\Delta P_t (Pa)$ dB(A)	38 37	13 31							
100	27,8	V _k (m/s)	31	2,3	1,4	0,9	1				
100	27,0	X (m)		1,0	0,7	0,6	-				
		ΔP_{t} (Pa)		51	18	7	1				
		dB(A)		46	35	22	1				
200	55,6	V _k (m/s)			2,8	1,8	1,1				
		X (m)			1,5	1,2	1,0				
		$_{\Delta}P_{t}$ (Pa)			71	29	11				
		dB(A)			50	38	28				
300	83,3	V _k (m/s)				2,7	1,7	1,1	0,8	0,7	
		X (m)				1,8	1,4	1,1	1,0	0,9	
		$\Delta P_{t} (Pa)$				64	25	7	6	3	
	444.4	dB(A)				48	38	28	24	<20	
400	111,1	V _k (m/s)				3,6 2,4	2,3 1,9	1,4	1,1 1,3	0,9 1,2	
		X (m) $\Delta P_t (Pa)$				115	45	1,5 12	1,3	6	
		dB(A)				55	45	35	31	26	
500	138,9	V _k (m/s)					2,9	1,8	1,4	1,1	0,7
		X (m)					2,4	1,9	1,7	1,5	1,2
		∆P _t (Pa)					70	19	18	10	3
		dB(A)					50	40	37	31	21
600	166,7	V _k (m/s)					3,4	2,2	1,7	1,3	0,9
		X (m)					2,9	2,3	2,0	1,8	1,4
		ΔP_{t} (Pa)					101	28	26	14	4
		dB(A)					55	45	41	35	25
700	194,4	V _k (m/s)						2,5	2,0	1,6	1,0
		X (m)						2,6 38	2,3 35	2,1 19	1,7 5
		$\Delta P_t (Pa)$ dB(A)						48	45	39	29
850	236,1	V _k (m/s)						3,0	2,4	1,9	1,2
000	200,1	X (m)						3,2	2,8	2,5	2,0
		$\Delta P_{t} (Pa)$						56	51	28	8
		dB(A)						53	50	43	34
1000	277,8	V _k (m/s)							2,8	2,2	1,4
		X (m)							3,3	3,0	2,4
		ΔP_{t} (Pa)							71	38	11
		dB(A)							54	47	38
1500	416,7	V _k (m/s)								3,3	2,1
		X (m)								4,5	3,6
		$\Delta P_t (Pa)$ dB(A)								86 56	24 48
1800	500,0	V _k (m/s)								50	2,6
	000,0	X (m)									4,3
		ΔP_{t} (Pa)									35
		dB(A)									53
2000	555,6	V _k (m/s)									2,8
		X (m)									4,8
		ΔP_{t} (Pa)									43
		dB(A)									55

SYMBOLBEDEUTUNG

A_k Effektiv-Strömungsfläche in m²
 V_k Effektiv-Geschwindigkeit in m/s
 X Wurfweite in m, bei einer Maximalgeschwindigkeit von 0,25 m/s im Aufenthaltsbereich, ΔT = 0 K, einer Einbauhöhe von 3 m, unter Berücksichtigung des Coanda-Effektes
 Pt Gesamtdruckverlust in Pa

Schallleistungspegel in dB(A)

Technische Daten. Auswahltabellen: DFRE-GR-PR / -Q

(m³/h) (l/s) 31038 123 100 200 230 310 50 13,9 X (m) 0,6 V _k (m/s) 0,7			
ΔP_{tot} (Pa) 11			
L _W - [dB(A)] 27			
100 27,8 X (m) 1,2 0,8			
V _k (m/s) 1,3 1,1			
ΔP _{tot} (Pa) 45 19			
L _W - [dB(A)] 44 35			
125 34,7 X (m) 1,5 1,0 0,9			
V _k (m/s) 1,7 1,3 1,1			
ΔP _{tot} (Pa) 71 29 11			
L _W - [dB(A)] 49 40 27			
150 41,7 X (m) 1,2 1,1 0,9			
V _k (m/s) 1,6 1,3 1,1			
ΔP _{tot} (Pa) 42 15 7			
L _W - [dB(A)] 45 32 22			
175 48,6 X (m) 1,4 1,2 1,1			
V _k (m/s) 1,9 1,5 1,2			
ΔP _{tot} (Pa) 57 21 9			
L _W - [dB(A)] 48 36 26			
200 55,6 X (m) 1,6 1,4 1,3 1,0			
V _k (m/s) 2,2 1,7 1,4 1,2			
$\Delta P_{\text{tot}} (Pa)$ 75 27 12 6			
L _W - [dB(A)] 52 40 30 <20			
300 83,3 X (m) 2,1 1,9 1,5	1,3	1,1	
V _k (m/s) 2,6 2,1 1,8	1,6	1,4	
ΔP _{tot} (Pa) 61 27 13	8	5	
L _W - [dB(A)] 51 41 30 400 111,1 X (m) 2,5 1,9	25	22	1,3
400 111,1 X (m) 2,5 1,9 2,8 2,4	1,7 2,1	1,5 1,9	1,7
ΔP_{tot} (Pa) $2,0$ $2,4$ 49 24	15	9	7
L _W - [dB(A)] 49 39	33	29	23
500 138,9 X (m) 2,4	2,2	1,9	1,6
V _k (m/s) 3,0	2,7	2,4	2,1
ΔP_{tot} (Pa)	23	14	10
L _W - [dB(A)] 45	40	35	29
600 166,7 X (m) 2,9	2,6	2,3	1,9
V _k (m/s) 3,7	3,2	2,9	2,5
$\Delta P_{\text{tot}} (Pa)$ 53	33	20	15
L _W - [dB(A)] 50	45	40	34
700 194,4 X (m)	3,0	2,6	2,2
V _k (m/s)	3,8	3,4	2,9
ΔP _{tot} (Pa)	45	27	20
L _W - [dB(A)]	49	44	38
800 222,2 X (m)		3,0	2,6
V _k (m/s)		3,9	3,3
ΔP _{tot} (Pa)		35	26
L _W - [dB(A)]		47	41
900 250,0 X (m)		3,4	2,9
V _k (m/s)		4,3	3,7
ΔP _{tot} (Pa)		45	33
L _W - [dB(A)]		50	44
1000 277,8 X (m)			3,2
V _k (m/s)			4,1
ΔP _{tot} (Pa)			41
L _W - [dB(A)]			47

SYMBOLBEDEUTUNG

A_k Effektiv-Strömungsfläche in m²
 V_k Effektiv-Geschwindigkeit in m/s
 X Wurfweite in m, bei einer Maximal-geschwindigkeit von 0,25 m/s im Aufenthaltsbereich, ΔT= 0 K, einer Einbauhöhe von 3 m, unter Berücksichtigung des Coanda-Effektes
 Pt Gesamtdruckverlust in Pa Schallleistungspegel in dB(A)

Technische Daten. Auswahltabellen: DAFC/Q/C

DAFC										
C	Q	Größe	125	160	200	250	315	355	400	500
(m³/h)	(l/s)	Ak (m²)	0,00623	0,00804	0,01065	0,01472	0,02138	0,02623	0,03239	0,04870
		X (m)	0,7	0,6		,	,	,		,
50	13,9	ΔPt (Pa)	18	7	1					
		LW - [dB(A)]	30	21	1					
		X (m)	1,3	1,1	0,0	0,8				
100	27,8	∆Pt (Pa)	75	29	10	4				
		LW - [dB(A)]	49	38	29	20				
		X (m)		1,7	1,5	1,3				
150	41,7	∆Pt (Pa)		65	23	9				
		LW - [dB(A)]		48	38	30				
		X (m)			1,0	1,7	1,4	1,3		
200	55,6	∆Pt (Pa)			42	16	9	5		
		LW - [dB(A)]			45	36	25	21		
		X (m)				2,1	1,8	1,6	1,4	
250	69,4	∆Pt (Pa)				25	14	8	6	
		LW - [dB(A)]				42	31	27	23	
		X (m)				2,5	2,1	1,9	1,7	
300	83,3	∆Pt (Pa)				36	20	12	8	
		LW - [dB(A)]				46	36	31	28	
		X (m)				2,0	2,5	2,2	1,0	1,6
350	97,2	ΔPt (Pa)				50	28	17	12	6
		LW - [dB(A)]				49	40	35	32	23
400	444.4	X (m)	ļ				2,8	2,5	2,3	1,9
400	111,1	ΔPt (Pa)	ļ				37	22	15	8
		LW - [dB(A)]					44	39	35	27
450	125,0	X (m) ΔPt (Pa)					3,2 46	2,9 28	2,6 20	2,1
450	125,0	LW - [dB(A)]					47	42	38	30
		X (m)					3,5	3,2	2,9	2,3
500	138,9	∆Pt (Pa)					57	35	2,9	12
300	130,9	LW - [dB(A)]	ļ				49	44	41	32
		X (m)						3,5	3,1	2,6
550	152,8	ΔPt (Pa)	1					43	30	15
000	102,0	LW - [dB(A)]	1					47	43	35
		X (m)						3,8	3,4	2,8
600	166,7	ΔPt (Pa)						51	35	18
200	. 55,1	LW - [dB(A)]						49	46	37
		X (m)			L				3,0	3,3
700	194,4	∆Pt (Pa)							48	25
-	,-	LW - [dB(A)]	1						49	41
		X (m)								3,7
800	222,2	ΔPt (Pa)								32
		LW - [dB(A)]	1							45
		X (m)	1							4,2
900	250,0	ΔPt (Pa)	1							41
		LW - [dB(A)]	1							48

SYMBOLBEDEUTUNG

A_k Effektiv-Strömungsfläche in m²

V_k Effektiv-Geschwindigkeit in m/s

X Wurfweite in m, bei einer Maximal-geschwindigkeit von 0,25 m/s im Aufenthaltsbereich, $\Delta T = 0$ K, einer Einbauhöhe von

3 m, unter Berücksichtigung des Coanda-Effektes Gesamtdruckverlust in Pa

Schallleistungspegel in dB(A)

Technische Daten. Auswahltabellen: HDPR/Q/C

	HDPR								
(Q	Größe	125	160	200	250	315	355	400
(m³/h)	(l/s)	A _k (m²)	0,0089	0,0103	0,0136	0,0212	0,0405	0,0599	0,0909
		V _k (m/s)	1,6	1,3					
	40.0	X (m)	1,6	1,5					
50	13,9	∆P _t (Pa)	7	5					
		dB(A)	21	<20					
		V _k (m/s)	3,1	2,7	2,0	1,3			
100	27,8	X (m)	3,2	2,9	2,6	2,0			
100	21,0	∆P _t (Pa)	29	20	10	3			
		dB(A)	39	33	26	<20			
		V _k (m/s)	4,7	4,0	3,1	1,0	1,0		
150	41,7	X (m)	4,8	4,4	3,8	3,1	2,2		
	, ,	∆P _t (Pa)	66	47	23	7	2		
		dB(A)	50	44	36	21	<20		
		V _k (m/s)		5,4	4,1	2,6	1,4		
200	55,6	X (m)		5,9	5,1	4,1	2,0		
	00,0	∆P _t (Pa)		83	41	13	4		
		dB(A)		51	44	28	20		
		V _k (m/s)			6,1	3,9	2,1	1,4	
300	83,3	X (m)			7,7	6,1	4,4	3,7	
	, .	∆P _t (Pa)			94	29	11	6	
		dB(A)			55	39	31	23	
		V _k (m/s)				5,2	2,7	1,9	1,2
400	111,1	X (m)				8,2	5,9	4,9	3,0
		ΔP _t (Pa)				52	19	10	4
		dB(A)				47	39	31	25
		V _k (m/s)					3,4	2,3	1,5
500	138,9	X (m)					7,4	6,1	4,9
		ΔP _t (Pa)					30	16	7
		dB(A)					46	37	31
		V _k (m/s)					4,1	2,8	1,8
600	166,7	X (m)					8,9	7,3	5,9
		ΔP _t (Pa)					44	24	10
		dB(A)					51	42	36
		V _k (m/s)						3,2	2,1
700	194,4	X (m)						8,5	6,9
		ΔP _t (Pa)						32	13
		dB(A)						47	40
		V _k (m/s)						3,7	2,4
800	222,2	X (m)						9,8	7,9
		ΔP _t (Pa)						42 51	18
		dB(A)						51	44
		V _k (m/s)							2,7
900	250,0	X (m)							8,9 22
		ΔP (Pa)							
		dB(A)							47

SYMBOLBEDEUTUNG

A_k Effektiv-Strömungsfläche in m²
 V_k Effektiv-Geschwindigkeit in m/s
 X Wurfweite in m, bei einer Maximalgeschwindigkeit von 0,25 m/s im

 Aufenthaltsbereich, ΔT= 0 K, einer Einbauhöhe von 3 m, unter Berücksichtigung des Coanda-Effektes

 Pt Gesamtdruckverlust in Pa
 L_w Schallleistungspegel in dB(A)

Technische Daten. Auswahltabellen: DAFT/Q/C

							DAF	-							
	Q		Größe		325			400			500			600	
m³/h	l/s		Х	0.6	1.5	2.1	0.6	1.5	2.1	0.6	1.5	2.1	0.6	1.5	2.1
			H = 2,7	0,14	0,09	0,07									
80	22,2	V_{z}	H = 3,2	0,11	0,07	0,06									
00	22,2		H = 3,8	0,08	0,06	0,05									
		-	ΔP _t		20		_			\vdash			_		
			H = 2,7	0,18	0,11	0,09	0,13	0,08	0,07						
		V	H = 3,2	0,13	0,09	0,08	0,10	0,07	0,06	1					
100	27,8	_	H = 3,8	0,10	0,08	0,07	0,08	0,06	0,05	1					
			ΔP_{t}		7			1							
			LWA	0.07	26	0.40	0.00	<15	0.40	0.40	0.40	0.00	_		
		\/	H = 2,7 H = 3,2	0,27	0,17	0,13	0,20	0,12	0,10	0,16	0,10	0,08			
150	41,7	V_z	H = 3,8	0,20	0,14	0,12	0,15	0,10	0,08	0,12	0,08	0,07			
			ΔP_t	0,16	0,12 17	0,10	0,11	0,08	0,07	0,09	0,07	0,06			
			LWA		36			18			<15				
			H = 2,7	0,36	0,22	0,18	0,26	0,16	0,13	0,22	0,13	0,11	0,18	0,12	0,09
200	55.0	V_{Z}	H = 3,2	0,27	0,19	0,15	0,20	0,13	0,11	0,16	0,11	0,09	0,14	0,10	0,08
200	55,6		H = 3,8	0,21	0,15	0,13	0,15	0,11	0,10	0,12	0,09	0,08	0,11	0,08	0,07
			ΔP _t		30 43			7 25		_	4 17			2 <15	
			H = 2,7	0,45	0,28	0,22	0,33	0,20	0,16	0,27	0,17	0,13	0,23	0,14	0,12
		V ₇	H = 3,2	0,34	0,23	0,19	0,24	0,17	0,14	0,20	0,14	0,12	0,17	0,12	0,10
250	69,4	_	H = 3,8	0,26	0,19	0,16	0,19	0,14	0,12	0,16	0,12	0,10	0,13	0,10	0,08
			ΔP_{t}		47			12			7		3		
			LWA		48			30			23			15	
		ļ , ,	H = 2,7	0,54	0,34	0,27	0,39	0,24	0,20	0,32	0,20	0,16	0,28	0,17	0,14
300	83,3	V_z	H = 3,2	0,40	0,28	0,23	0,29	0,20	0,17	0,24	0,17	0,14	0,21	0,14	0,12
		\vdash	$H = 3.8$ ΔP_{t}	0,31	0,23	0,20	0,23	0,17 17	0,14	0,19	0,14 10	0,12	0,16	0,12 5	0,10
			LWA	68 53				35		\vdash	27			20	
			H = 2,7				0,52	0,33	0,26	0,43	0,27	0,22	0,37	0,23	0,18
400		V_{z}	H = 3,2				0,39	0,27	0,22	0,32	0,22	0,18	0,28	0,19	0,16
400	111,1		H = 3,8				0,30	0,22	0,19	0,25	0,18	0,16	0,21	0,16	0,14
			ΔP _t LWA	_				30 42		_	18 34			9 27	
			H = 2,7				0,65	0,41	0,33	0,54	0,34	0,27	0,46	0,29	0,23
		Vz	H = 3,2	1			0,49	0,34	0,28	0,40	0,28	0,23	0,35	0,24	0,20
500	138,9	_	H = 3,8	1			0,38	0,28	0,24	0,31	0,23	0,20	0,27	0,20	0,17
			ΔPt					48			28			14	
			LWA 0.7				0.70	47	0.00	0.05	40	0.00	0.55	32	0.00
		\/	H = 2,7 H = 3,2	1			0,78	0,49	0,39	0,65 0,48	0,40	0,32	0,55	0,35	0,28
600	166,7	Vz	H = 3,8	1			0,59	0,40	0,33	0,48	0,33	0,28	0,42	0,29	0,24
		-	ΔP_t				0,40	69	0,20	0,07	40	0,24	0,02	21	0,20
			LWA					52			44			37	
			H = 2,7							0,75	0,47	0,38	0,65	0,40	0,32
700	194,4	V_{Z}	H = 3,2							0,56	0,39	0,32	0,48	0,33	0,28
700	194,4		H = 3,8							0,43	0,32	0,28	0,37	0,28	0,24
		\vdash	ΔP _t LWA				 			\vdash	55 48		 	29 40	
			H = 2,7							0,86	0,54	0,43	0,74	0,46	0,37
900	200.0	V_{z}	H = 3,2]						0,65	0,45	0,37	0,55	0,38	0,32
800	222,2		$H = 3.8$ ΔP_{t}							0,50	0,37 72	0,31	0,43	0,32 38	0,27
			LWA								51			44	
			H = 2,7										0,92	0,58	0,46
1000	077.5	V_z	H = 3,2	-									0,69	0,48	0,40
1000	277,8	\vdash	H = 3,8				_			\vdash			0,53	0,40 59	0,34
			ΔP _t	\vdash						\vdash				49	
			**/1											-	

SYMBOLBEDEUTUNG

- A_k Effektiv-Strömungsfläche in m²
- V_z Geschwindigkeit in der Aufenthaltszone in
- X Abstand zwischen den Auslass-Achsen in m P_t Gesamtdruckverlust in Pa

Schallleistungspegel in dB(A)

Technische Daten. Auswahltabellen: DFRT/Q/C

	DFRT														
C	Q	(Größe		325			400			500			600	
m³/h	l/s		Х	0.6	1.5	2.1	0.6	1.5	2.1	0.6	1.5	2.1	0.6	1.5	2.1
			H = 2,7	0,12	0,07	0,06									
		V_z	H = 3,2	0,09	0,06	0,05									
80	22,2		H = 3,8	0,07	0,05	0,04									
			ΔP_{t}		3										
			LWA		<15										
			H = 2,7	0,14	0,09	0,07	0,11	0,07	0,06						
100	07.0	V_z	H = 3,2	0,11	0,07	0,06	0,08	0,06	0,05						
100	27,8		H = 3,8	0,08	0,06	0,05	0,06	0,05	0,04						
			ΔP _t	_	5 19		_	2 <15		_			<u> </u>		
			H = 2,7	0,22	0,14	0,11	0,17	0,10	0,08	0,13	0,08	0,07	\vdash		
		Vz	H = 3,2	0,16	0,11	0,09	0,13	0,09	0,07	0,10	0,07	0,06	ł		
150	41,7	٠z	H = 3,8	0,12	0,09	0,08	0,10	0,07	0,06	0,08	0,06	0,05	ł		
			ΔP_{t}	0,12	13	0,00	0,10	4	0,00	0,00	2	0,00	-		
			LWA		29			17			<15				
			H = 2,7	0,29	0,18	0,14	0,22	0,14	0,11	0,18	0,11	0,09	0,14	0,09	0,07
		V_{z}	H = 3,2	0,22	0,15	0,12	0,17	0,12	0,10	0,13	0,09	0,08	0,10	0,07	0,06
200	55,6		H = 3,8	0,17	0,12	0,11	0,13	0,10	0,08	0,10	0,08	0,06	0,08	0,06	0,05
			ΔP_{t}		23			8			4			1	
\vdash			LWA	0.00	35	0.40	0.00	24	0.44	0.00	17	0.44	0.47	<15	0.00
		.,	H = 2,7	0,36	0,23	0,18	0,28	0,17	0,14	0,22	0,14	0,11	0,17	0,11	0,09
250	69,4	V_z	H = 3,2	0,27	0,19	0,15	0,21	0,14	0,12	0,17	0,11	0,09	0,13	0,09	0,07
200	00,4		H = 3,8	0,21 0,15 0,13			0,16	0,12	0,10	0,13	0,09	0,08	0,10	0,07	0,06
			ΔP _t	36 40			13 29		6 22			\vdash	2 <15		
			H = 2,7	0,43	0,27	0,22	0,34	0,21	0,17	0,26	0,17	0,13	0,21	0,13	0,10
	83,3	Vz	H = 3,2	0,32	0,22	0,19	0,25	0,17	0,14	0,20	0,14	0,11	0,16	0,11	0,09
300		_	H = 3,8	0,25	0,19	0,16	0,19	0,14	0,12	0,15	0,11	0,10	0,12	0,09	0,08
			ΔP_{t}		52		18				9			3	
			LWA		44		33				26		17		
			H = 2,7	0,58	0,36	0,29	0,45	0,28	0,22	0,35	0,22	0,18	0,28	0,17	0,14
400	444.4	V_z	H = 3,2	0,43	0,30	0,25	0,34	0,23	0,19	0,26	0,18	0,15	0,21	0,14	0,12
400	111,1		H = 3,8	0,33	0,25	0,21	0,26	0,19	0,16	0,20	0,15	0,13	0,16	0,12	0,10
			ΔP _t	_	94 51		33 40		17 33			_	6 24		
			H = 2,7	\vdash	01		0.56		0,28	0.44		0.22	0,35		0.17
		Vz	H = 3,2	ł			0,42	0,29	0,24	0,33	0,23	0,19	0,26	0,18	0,15
500	138,9	- 2	H = 3,8	ł			0,32	0,24	0,20	0,25	0,19	0,16	0,20	0,15	0,13
			ΔP_{t}	\vdash			0,02	52	0,20	0,20	26	0,10	0,20	10	0,.0
			LWA					45			38			29	
			H = 2,7				0,67	0,42	0,34	0,53	0,33	0,26	0,42	0,26	0,21
		V_{z}	H = 3,2				0,50	0,35	0,29	0,40	0,27	0,23	0,31	0,22	0,18
600	166,7		H = 3,8				0,39	0,29	0,25	0,30	0,23	0,19	0,24	0,18	0,15
			ΔP_{f}					75			38			14	
$\vdash\vdash\vdash$		_	LWA H = 2,7	\vdash			_	49		0,70	42 0,44	0,35	0,56	33 0,35	0,28
		\/	H = 2,7 $H = 3,2$							0,70	0,36	0,35	0,56	0,35	0,26
800	222,2	Vz										_			
		H = 3,8		\vdash			_			0,41	0,30 68	0,26	0,32	0,24 26	0,20
			ΔP _t	\vdash							49			40	
			H = 2,7										0,69	0,43	0,35
		V_{Z}	H = 3,2										0,52	0,36	0,30
1000	277,8		H = 3,8										0,40	0,30	0,25
		_	ΔP _t	<u> </u>									\vdash	41	
			L _{WA}											45	

SYMBOLBEDEUTUNG

Effektiv-Strömungsfläche in m²
Geschwindigkeit in der Aufenthaltszone in m/s
Abstand zwischen den Auslass-Achsen in m
Gesamtdruckverlust in Pa
Schallleistungspegel in dB(A)

Typenschlüssel

Über den beiliegenden Typenschlüssel werden Auslaß und Mischkammer spezifiziert:

obor don bomog	Type Too Tido Got Welder / Adolais and Wilder Marin Tido Spezialiert.
DFRE	Drallauslaß mit feststehenden Lamellen
DFRE-Q	Drallauslaß mit feststehenden Lamellen in Platten 625 x 625 mm
DFRE-C	Drallauslaß mit feststehenden Lamellen in runder Ausführung
DFRE-GR	Drallauslaß mit feststehenden Lamellen in runder Ausführung
DFRE-GR-PR	In Lochblechplatte integrierter Drallauslaß mit feststehenden Lamellen
DFRE-GR-PR-Q	In Lochblechplatte integrierter Drallauslaß mit feststehenden Lamellen in Platten 625 x 625 mm
DAFC	Drallauslaß mit feststehenden gekrümmten Lamellen
DAFC-Q	Drallauslaß mit feststehenden gekrümmten Lamellen in Platten 625 x 625 mm
DAFC-C	Drallauslaß mit feststehenden gekrümmten Lamellen in runder Ausführung
HDPR	Drallauslaß mit feststehenden Lamellen in Sonderausführung
HDPR-C	Drallauslaß mit feststehenden Lamellen in rundem Lochblech in Sonderausführung
HDPR-Q	Drallauslaß mit feststehenden Lamellen in Sonderausführung in Platten 625 x 625 mm
DAFT	Drallauslaß mit feststehenden Lamellen
DAFT-C	Drallauslaß mit feststehenden Lamellen in runder Ausführung
DAFT-Q	Drallauslaß mit feststehenden Lamellen in Platten 625 x 625 mm
DFRT	Drallauslaß mit feststehenden Lamellen
DFRT-C	Drallauslaß mit feststehenden Lamellen in runder Ausführung
DFRT-Q	Drallauslaß mit feststehenden Lamellen in Platten 625 x 625 mm
E	Gipskartondecken
Ø (125500)	Auslaßgröße
RAL 9010 RAL	Standardausführung Andere RAL-Farben auf Wunsch
PD-RE.	Runder Anschlußkasten mit Seitenanschluß, abbaubar, innen ungedämmt, mit von der Zwischendecke aus zugänglicher Drosselklappe.
PDA-RE.	Runder Anschlußkasten mit Seitenanschluß, abbaubar, innen gedämmt, mit von der Zwischendecke aus zugänglicher Drosselklappe.
PD-RL.	Runder Anschlußkasten mit Seitenanschluß, abbaubar, innen ungedämmt, mit vom Raum aus zugänglicher Drosselklappe.
PDA-RL.	Runder Anschlußkasten mit Seitenanschluß, abbaubar, innen gedämmt, mit Drosselklappe
PE-45	Mit Anschlusskasten aus Polystyroln für Luftauslass mit Platte 595 x 595 mm
	<u> </u>

Beispiel für Typenschlüssel:

DFRE-Q- E-Ø315 RAL 9010

Drallauslaß mit feststehenden Lamellen in Platte 625 x 625 mm eingebaut, mit Durchmesser 315 mm, beschichtet in RAL 9010 weiß.

Dieser Katalog ist geistiger Eigentum von Koolair, S.L. Nachdruck, entweder teilweise oder gesamt (ebenfalls elektronisch), ist ohne vorheriger schriftliche Zustimmung von Koolair, S.L. verboten

Alle Drucksachen, in Papier oder digital, werden mit grösster Sorgfalt erzeugt. Koolair, S.A. kann keineswegs für Schreib-, Druck- oder Übersetzungsfehler verantwortlich gemacht werden. Im Falle eines Reschtsstreits gilt die spanische Sprache als Referenzsprache.

KOOLAIR, S.L.

Calle Urano, 26 Poligono industrial nº 2 – La Fuensanta 28936 Móstoles - Madrid - (España)

Tel: +34 91 645 00 33 Fax: +34 91 645 69 62 e-mail: info@koolair.com