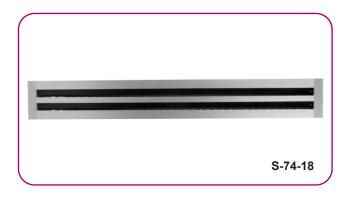


S-70

Difusores rotacionais de lâmina móvel

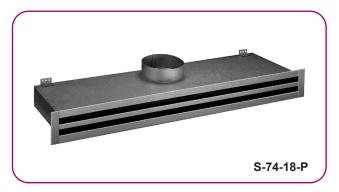
Difusores rotacionais

www.koolair.com



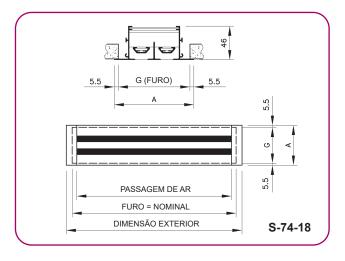
ÍNDICE

Características gerais S-74/72-18	2
Quadros de selecção	3
Exemplo de selecção	5
Características gerais S-74/72-25	6
Quadros de selecção	7
Exemplo de selecção	10
Quadro de selecção	11
Coeficientes de indução	12
Versões de difusores lineares	13
Tipos de plenos	14
Dimensões gerais	15
Quadro de selecção	23
Recomendações úteis	24


Características gerais S-74/72-18

Descrição

Difusor linear de insuflação S-74-18, construído em alumínio anodizado na sua cor natural ou pré-lacado em branco brilhante RAL-9010, como acabamentos padrão. As alhetas direccionais são em cor negro baço. A versão 74-18-P. incorpora pleno de alimentação em chapa de aço galvanizada, com ou sem isolamento.


Existem três sistemas de fixação do pleno: aparafusado, com pontes ou com molas. Os sistemas estão descritos nas págs. 13 e 14.

Utilização

Os difusores lineares modelo S-74-18 são especialmente indicados para instalação em tecto. As suas alhetas direccionais permitem orientar o fluxo de ar de 0º a 180º. Dispõem de comporta de regulação de caudal de tipo corrediça. Para o retorno pode utilizar- se a versão S-72-18 (que não tem comporta de regulação).

A intercalação de difusores de retorno com outros de impulsão na mesma linha contínua assegura um elevado grau de estética e funcionalidade. Para determinar o caudal de retorno ver indicações a esse respeito na pág. 24 (recomendações úteis).

Dimensões

A dimensão «L» (comprimento) é sempre a de passagem de ar. A dimensão nominal ou de FURO é igual a L+25 mm. A dimensão «G» corresponde à largura do FURO e figura nos quadros de dimensões.

Ver dimensões gerais incluindo caixilhos e ângulos de remate nas págs. 16 a 22.

Identificação

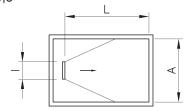
Os difusores S-74-18 têm alhetas direccionais e comportas de regulação. As versões sem pleno incorporam pontes de montagem. Para retorno pode usar-se a versão S-72-18, que não inclui a comporta de regulação, mas sim as alhetas direccionais. Todos os difusores têm ângulos de remate nas cabeceiras. Nos difusores com pleno é necessário definir um dos três sistemas de fixação ao difusor.

Quadro de selecção (descarga vertical)

Este quadro de selecção baseia-se em ensaios de laboratório segundo as normas ISO 5219 (UNE 100.710) e ISO 5135 e 3741.

O ΔT é igual a -10° C, diferença entre a temperatura do recinto e a temperatura do ar insuflado.

		Comprimento em mm e número de vias												
	2	Dim.	600-1	900-1	1200-1 600-2	1500-1	900-2 600-3	1200-2 600-4	900-3	1500-2	1200-3 900-4	1500-3	1200-4	1500-4
m³/h	l/s	A _k (m ²)	0,00598	0,00897	0,01196	0,01495	0,01794	0,02391	0,02690	0,02989	0,03587	0,04484	0,04783	0,05978
		V _k (m/s)	2,8	1,9	1,4	1,1								
60	16,7	X (m)	1,5	1,2	1,0	0,9								
"	10,7	ΔP _t (Pa)	19	8	5	3								
		dB (A)	27	<20	<20	<20								
		V _k (m/s)	3,7	2,5	1,9	1,5	1,2							
80	22,2	X (m)	2,0	1,6	1,4	1,2	1,1							
"	,_	ΔP, (Pa)	35	14	9	6	5							
$oxed{oxed}$		dB (A)	35	27	21	<20	<20			ı				
		V _k (m/s)	4,6	3,1	2,3	1,9	1,5	1,2	1,0					
100	27,8	X (m)	2,4	2,0	1,7	1,5	1,4	1,2	1,2					
	,	ΔP _t (Pa)	54	21	14	9	8	5	4					
\vdash		dB (A)	41	33	27	23	<20	<20	<20		ı	ı		
		V _k (m/s)	6,5	4,3	3,3	2,6	2,2	1,6	1,4	1,3	1,1			
140	38,9	X (m)	3,4	2,8	2,4	2,2	2,0	1,7	1,6	1,5	1,4			
		ΔP, (Pa)	106	41	28	18	15	11	8	4	4			
\vdash		dB (A)	51	42	37	32	29	23	21	<20	<20	4.4	1.0	.
		V _k (m/s)		5,6	4,2	3,3	2,8	2,1	1,9	1,7	1,4	1,1	1,0	
180	50,0	X (m)		3,6	3,1	2,8	2,5	2,2	2,1	2,0 7	1,8 7	1,6	1,6	
		ΔP ₊ (Pa)		68 49	46 44	30	24 36	18 30	13 27	25	24	5 <20	4 <20	
\vdash		dB (A)		6,2		39 3,7	3,1	2,3	2,1	1,9	1,5	1,2	1,2	
		V _k (m/s) X (m)		4,0	4,6 3,5	-	2,8		2,1	2,2	2,0		1,7	
200	55,6	ΔP, (Pa)		84	57	3,1 36	30	2,4 22	16	9	8	1,8 6	5	
		dB (A)		52	47	42	38	33	30	28	27	22	21	
\vdash		V _k (m/s)		52	5,8	4,6	3,9	2,9	2,6	2,3	1,9	1,5	1,5	1,2
		X (m)			4,3	3,9	3,5	3,1	2,9	2,7	2,5	2,2	2,2	1,9
250	69,4	ΔP, (Pa)			89	57	47	34	24	14	13	9	8	5
		dB (A)			53	48	45	39	37	34	33	28	27	23
		V _k (m/s)				5,6	4,6	3,5	3,1	2,8	2,3	1,9	1,7	1,4
		X (m)				4,6	4,2	3,7	3,5	3,3	3,0	2,7	2,6	2,3
300	83,3	ΔP, (Pa)				82	68	49	35	20	19	13	11	7
		dB (A)				53	50	44	42	40	38	33	32	28
		V _k (m/s)						4,6	4,1	3,7	3,1	2,5	2,3	1,9
1 400	444.4	X (m)						4,9	4,6	4,4	4,0	3,6	3,5	3,1
400	111,1	ΔP, (Pa)						87	62	35	34	23	20	13
		dB (A)						52	50	47	46	41	40	36
		V _k (m/s)								4,6	3,9	3,1	2,9	2,3
500	138,9	X (m)								4,5	5,0	4,5	4,3	3,9
300	130,9	ΔP, (Pa)								55	53	36	32	20
		dB (A)								54	52	48	46	42
		V _k (m/s)										3,7	3,5	2,8
600	166,7	X (m)										5,4	5,2	4,6
""	100,1	ΔP, (Pa)							_			52	45	29
igsqcut		dB (A)		Simbo								53	51	47
		V _k (m/s)			ıdal de ar		~	,					4,1	3,3
700	194,4	X (m)					ção em m²						6,1	5,4
		ΔP _t (Pa)				i do jacto c	insuflação le ar	em m/s					62	40
\vdash		dB (A)				ga total em							56	51
		V _k (m/s)					onora em	dB (A)						3,7
800	222,2	X (m)												6,2
		ΔP _t (Pa)												52
		dB (A)												55


Quadro de selecção (descarga horizontal)

			C	omprime	nto em mi	n e núme	ro de vias	i	
	Q	Dim.	600-1	900-1	1200-1 600-2	1500-1	900-2	1200-2	1500-2
m³/h	l/s	A _k (m ²)	0,00622	0,00933	0,01243	0,01554	0,01865	0,02487	0,03109
		V _k (m/s)	2,7	1,8	ļ				
60	16,7	X (m)	1,1	0,9	ļ				
	10,7	ΔP, (Pa)	31	12					
	<u> </u>	dB (A)	20	<20	ļ				
		V _k (m/s)	3,6	2,4	1,8	1,4			
80	22.2	X (m)	1,5	1,2	1,0	0,9			
"	,-	ΔP, (Pa)	54	21	14	9			
	<u> </u>	dB (A)	29	22	<20	<20			
		V _k (m/s)	4,5	3,0	2,2	1,8	1,5	1,1	
100	27.8	X (m)	1,8	1,5	1,3	1,2	1,1	0,9	
		ΔP _t (Pa)	85	33	21	14	10	6	
	ļ	dB (A)	36	29	25	21	<20	<20	
		V _k (m/s)	6,3	4,2	3,1	2,5	2,1	1,6	1,3
140	38.9	X (m)	2,6	2,1	1,8	1,6	1,5	1,3	1,1
	00,0	ΔP _t (Pa)	166	65	42	27	20	12	7
		dB (A)	46	39	35	37	28	24	20
		V _k (m/s)	ļ	5,4	4,0	3,2	2,7	2,0	1,6
180	50.0	X (m)	ļ	2,7	2,3	2,1	1,9	1,6	1,5
	,-	ΔP, (Pa)		108	69	44	32	20	11
		dB (A)	ļ	47	42	39	36	31	28
	200 55,6	V _k (m/s)	ļ	6,0	4,5	3,6	3,0	2,2	1,8
200		X (m)		3,0	2,6	2,3	2,1	1,8	1,6
		ΔP _t (Pa)	ļ	133	85	54	40	24	14
		dB (A)	ļ	50	45	42	39	34	31
		V _k (m/s)			5,6	4,5	3,7	2,8	2,2
250	69.4	X (m)			3,2	2,9	2,6	2,3	2,0
	55,1	ΔP, (Pa)	ļ		133	85	62	38	21
	ļ	dB (A)	ļ		52	49	46	41	38
		V _k (m/s)				5,4	4,5	3,4	2,7
300	83,3	X (m)				3,5	3,2	2,7	2,4
		ΔP, (Pa)				122	90	54	31
	<u> </u>	dB (A)				54	51	47	43
		V _k (m/s)						4,5	3,6
400	111,1	X (m)	Simbo					3,7	3,2
	<u> </u>	ΔP _t (Pa)		dal de ar en		ama ma?		97	54
	<u> </u>	dB (A)	V.: Velo	a efectiva de ocidade efec	z msunação ctiva de insu	em m² flação em n	n/s	55	52
		V _k (m/s)	X: Alca	nce em m d	o jacto de a	r			4,5
500	138,9	X (m)		da de carga Nível de po			<u>.</u>		4,0
		ΔP, (Pa)	GD (A).	i vivei de po	noniola sullu	ia eili ub (A	"		85
		dB (A)							59

Para os quadros de selecção com descarga lateral:

- O difusor está situado no eixo longitudinal do tecto, junto à parede, num recinto de dimensões:
- L = Comprimento, A = Largura e I = Comprimento do difusor.

$$(A - I) / L = 0.5$$

- O tipo de jacto é aderente (efeito coanda), ou seja, o difusor é montado à face do tecto.

Para os quadros de selecção com descarga vertical:

- O difusor está situado no centro do tecto num recinto quadrado.
- Disposição de descarga vertical, em jacto livre.
- O comprimento do difusor é inferior a 0,5 vezes a largura do recinto e inferior a 0,5 vezes o alcance.
- A pressão P, é medida na conduta antes do pleno.
- A altura do recinto é de 3 ± 0,5 m.
- O ΔT é igual a -10 °C, diferença entre a temperatura do recinto e a temperatura do ar insuflado.
- A velocidade máxima na zona ocupada é de 0,25 m/s.

Exemplo de selecção (descarga lateral)

Exemplo

Necessidades requeridas:

Caudal de ar	200 m ³ /h
Alcance	2 a 2,5 m
Nível de potência sonora	Inferior a 30 dB(A)
Perda de carga requerida _	Inferior a 15 Pa
Velocidade efectiva	2 m/s
Direcção do fluxo de ar	Lateral

Selecção:

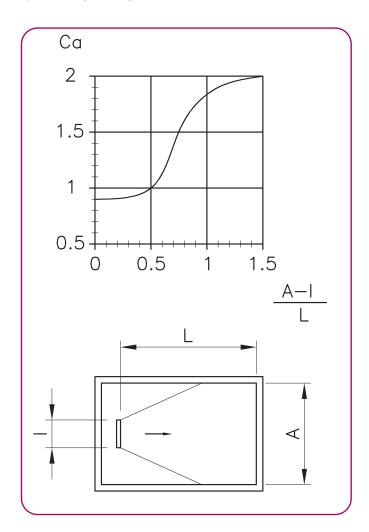
Por meio do quadro de selecção (pág. 3) de difusores lineares com descarga lateral, e seguindo o critério geral de que, para instalações de conforto, a velocidade recomendada neste tipo de difusores é de 2,5 a 4,5 m/s, obtém-se:

Difusor S-74-18 2 vias, 1.500 mm. de comprimento.

Q (Caudal de ar)	_. 200 m³/h (ou 55,6 l/s)
V _k (Velocidade efectiva)	1,9 m/s
X (Alcance)	2,2 m
P, (Perda de carga)	9 Pa
dB(A) (Nível de potência sonora)	28

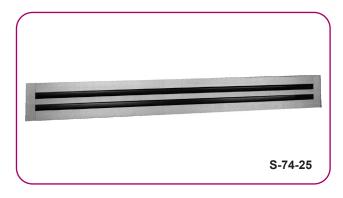
Observando os resultados, os dados obtidos ajustam-se às necessidades do projecto.

Factor de correcção em função da abertura da comporta.

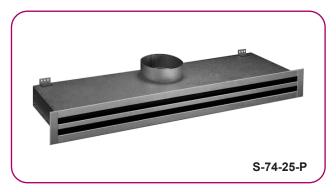

Os dados técnicos apresentados nos quadros de selecção dos difusores S-74-18 são para difusores incorporando comporta deslizante aberta a 100%.

Ao modificar a percentagem de abertura, o alcance real mal varia, mas ainda assim o nível sonoro e a perda de carga seriam modificados como segue:

COMPORTA	dB(A) NÍVEL SONORO	ΔP PERDA DE CARGA			
100% aberta	Valor dos quadros	Valor dos quadros			
75% aberta	+ 2 dB	x 1,33			
50% aberta	+ 5 dB	x 1,67			
25% aberta	+ 10 dB	x 5			


Factor de correcção por relação largura/comprimento do recinto:

Este factor denomina-se C_a . É dado pela divisão entre a largura menos o comprimento do difusor e o comprimento do recinto. É aplicável aos difusores lineares com descarga lateral. Nos difusores com descarga vertical o valor C_a é igual a 1, já que foram ensaiados num recinto quadrado (A/L = 1).


Características gerais S-74/72-25

Descrição

Difusor linear de impulsão modelo S-74-25, de alta capacidade, construído em alumínio anodizado na sua cor natural ou prélacado em branco brilhante RAL-9010 como acabamentos padrão. As alhetas direccionais são em cor negro baço. A versão S-74-18-P. incorpora pleno de alimentação em chapa de aço galvanizado, com ou sem isolamento.

Existem três sistemas de fixação do pleno: aparafusado, com pontes ou com molas. Os sistemas e a sua codificação estão descritos nas páginas 14 e 15.

Utilização

Os difusores lineares modelo S-74-25 são especialmente indicados para instalação em tecto e permitem veicular mais 25% de caudal (em igualdade de comprimentos) que o modelo S-74-18. As suas alheta direccionais permitem orientar o fluxo de ar de 0° a 180°.

Dispõem de comporta de regulação de caudal de tipo corrediça. A intercalação de difusores de retorno com outros de impulsão na mesma linha contínua assegura um elevado grau de estética e funcionalidade. Para o retorno podem utilizar-se os modelos S-72- 25, S-72-25/18 (que não têm comporta de regulação) ou o modelo S-72-25FF com portafiltros rebatível. Para determinar o caudal de retorno ver indicações a esse respeito na pág. 24 (recomendações úteis).

Dimensões

A dimensão «L» (comprimento) é sempre a de passagem de ar. A dimensão nominal ou de FURO é igual a L+25 mm. A dimensão «G» corresponde à largura do FURO e figura nos quadros de dimensões.

Ver dimensões gerais incluindo caixilhos e ângulos de remate nas páginas 15 a 23.

Identificação

Os difusores S-74-25 têm alhetas direccionais e comporta de regulação. As versões sem pleno incorporam pontes de montagem. Para retorno podem usar-se os modelos S-72-25 e S-72-25/18, que não incluem comportas de regulação, mas sim as alhetas direccionais, ou o modelo portafiltros S-72-25FF, rebatível até ao exterior para permitir facilmente a substituição do filtro.

Todos os difusores têm ângulos de remate nas cabeceiras. Nos difusores com pleno é necessário definir um dos três sistemas de fixação ao difusor, excepto o S-72-25FF, que só pode ser PF ou PD.

Quadro de selecção (descarga horizontal)

Este quadro de selecção está baseado em ensaios de laboratório segundo normas ISO 5219 (UNE 100.710) e ISO 5135 e 3741.

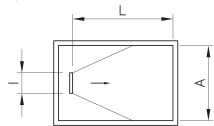
O ΔT é igual a -10° C, diferença entre a temperatura do recinto e a temperatura do ar insuflado.

A velocidade máxima na zona ocupada é de 0,25 m/s.

		Comprimento em mm e número de vias												
	Q	Dim.	600-1	900-1	1200-1 600-2	1500-1	900-2 600-3	1200-2 600-4	900-3	1500-2	1200-3 900-4	1500-3	1200-4	1500-4
m³/h	I/s	A _k (m²)	0,00672	0,01007	0,01343	0,01679	0,02015	0,02687	0,03022	0,03358	0,04030	0,05037	0,05373	0,06716
		V _k (m/s)	2,5	1,7	1,2	1,0	ļ							
60	16,7	X (m)	1,3	1,1	0,9	0,8	ļ							
		ΔP _t (Pa)	13 27	6	3	2	!							
		dB (A) V, (m/s)	3,3	<20 2,2	<20 1,7	<20 1,3	1,1	l						
		X (m)	1,7	1,4	1,2	1,1	1,0							
80	22,2	ΔP, (Pa)	23	20	6	4	3							
		dB (A)	34	26	20	<20	<20		_					
		V _k (m/s)	4,1	2,8	2,1	1,7	1,4	1,0						
100	27,8	X (m)	2,2	1,8	1,5	1,4	1,3	1,1						
		ΔP _t (Pa)	37	16	9	6	4	2						
		dB (A)	39 5,8	31 3,9	26 2,9	22 2,3	<20 1,9	<20 1,4	1,3	1,2	1,0	1		
		X (m)	3,0	2,5	2,1	1,9	1,8	1,5	1,4	1,4	1,0	1		
140	38,9	ΔP, (Pa)	72	32	18	11	8	4	4	3	2	İ		
		dB (A)	47	39	34	30	27	20	<20	<20	<20	İ		
		V _k (m/s)		5,0	3,7	3,0	2,5	1,9	1,7	1,5	1,2	1,0		ļ
180	50,0	X (m)		3,2	2,8	2,5	2,3	2,0	1,8	1,7	1,6	1,4	Į	
] 30,0	ΔP _t (Pa)		53	30	19	13	7	6	5	3	2		
		dB (A)		45	40	36	33	27	24	22	<20	<20	1.0	,
		V _k (m/s) X (m)		5,5 3,5	4,1 3,1	3,3 2,7	2,8 2,5	2,1 2,2	1,8 2,0	1,7 1,9	1,4 1,8	1,1 1,6	1,0 1,5	
200	55,6	ΔP, (Pa)		65	37	23	16	9	7	6	4	3	2	
		dB (A)		48	43	39	35	29	26	24	20	<20	<20	i
		V _k (m/s)			5,2	4,1	3,4	2,6	2,3	2,1	1,7	1,4	1,3	1,0
250	69,4	X (m)			3,8	3,4	3,1	2,7	2,6	2,4	2,2	2,0	1,9	1,7
200	00,4	ΔP _t (Pa)			57	37	25	14	11	9	6	4	4	2
		dB (A)			48	44	41	34	32	29	25	21	<20	<20
		V _k (m/s)			6,2 4,6	5,0 4,1	4,1 3,8	3,1 3,3	2,8 3,1	2,5 2,9	2,1 2,7	1,7	1,6 2,3	1,2 2,1
300	83,3	X (m) ΔP, (Pa)			82	53	3,6	21	16	13	9	2,4 6	2,3 5	3
		dB (A)			52	48	45	39	36	34	30	26	23	<20
		V, (m/s)				6,6	5,5	4,1	3,7	3,3	2,8	2,2	2,1	1,7
400	111,1	X (m)				5,5	5,0	4,3	4,1	3,9	3,5	3,2	3,1	2,7
400	111,1	ΔP _t (Pa)				94	65	37	29	23	16	10	9	6
		dB (A)				55	52	46	43	41	37	33	30	25
		V _k (m/s) X (m)						5,2 5,4	4,6 5,1	4,1 4,8	3,4 4,4	2,8 4,0	2,6 3,8	2,1 3,4
500	138,9	ΔP, (Pa)						57	45	37	25	16	14	9
		dB (A)						51	49	46	42	38	36	31
		V _k (m/s)							5,5	5,0	4,1	3,3	3,1	2,5
600	166,7	X (m)							6,1	5,8	5,3	4,7	4,6	4,1
""	100,7	ΔP _t (Pa)							65	53	37	23	21	13
		dB (A)							53	51	47	43	40	35
		V _k (m/s) X (m)								5,8 6,8	4,8 6,2	3,9 5,5	3,6 5,4	2,9 4,8
700	194,4	ΔP, (Pa)								72	50	32	28	18
		dB (A)								54	50	46	44	39
		V _k (m/s)									5,5	4,4	4,1	3,3
800	222,2	X (m)									7,1	6,3	6,1	5,5
""	222,2	ΔP _t (Pa)									65	42	37	23
		dB (A)									54	50	47	42
		V _k (m/s)										5,0	4,7	3,7
900	250,0	X (m) ΔP, (Pa)	_					_				7,1 53	6,9 46	6,2 30
		dB (A)		imbologia)				52	50	45
		V _k (m/s)	C): Caudal c	de ar em m								5,2	4,1
1000	277,8	X (m)	Α	ւ _k : Área efe	ectiva de in	isuflação e	em m²						7,7	6,9
1000	۵,۱۱۶	ΔP _t (Pa)	V	៉្.: Velocida	de efectiv	a de insufl	ação em n	n/s					57	37
		dB (A)		: Alcance									53	48
		V _k (m/s)		: Perda de										5,0
1200	333,3	X (m)	(d	B (A): Níve	el de potêr	ncia sonora	a em dB (A	N) /						8,2
		ΔP _t (Pa) dB (A)												53 52
		UD (A)	<u> </u>											IJΖ

Quadro de selecção (descarga horizontal)

		Comprimento em mm e número de vias												
	Q	Dim.	600-1	900-1	1200-1 600-2	1500-1	900-2 600-3	1200-2 600-4	900-3	1500-2	1200-3 900-4	1500-3	1200-4	1500-4
m³/h	I/s	A _k (m²)	0,00701	0,01052	0,01402	0,01753	0,02104	0,02805	0,03156	0,03506	0,04207	0,05259	0,05610	0,07012
		V _k (m/s)	2,4	1,6	1,2	1,0								
60	16,7	X (m)	1,1	0,9	0,7	0,7								
"	, .	ΔP, (Pa)	13	6	3	2								
	<u> </u>	dB (A)	26	<20	<20	<20		i						
		V _k (m/s)	3,2	2,1	1,6	1,3	1,1							
80	22,2	X (m) ΔP, (Pa)	1,4 22	1,1 10	1,0 6	0,9 4	0,8							
		dB (A)	33	24	<20	<20	<20							
	 	V _r (m/s)	4,0	2,6	2,0	1,6	1,3	1,0	l					
		X (m)	1,8	1,4	1,2	1,1	1,0	0,9						
100	27,8	ΔP, (Pa)	35	16	9	6	4	2						
		dB (A)	38	29	23	<20	<20	<20						
		V _k (m/s)	5,5	3,7	2,8	2,2	1,8	1,4	1,2	1,1				ĺ
140	38,9	X (m)	2,5	2,0	1,7	1,6	1,4	1,2	1,2	1,1				
140	30,9	ΔP, (Pa)	69	30	17	11	8	4	3	3				
		dB (A)	46	37	31	26	22	<20	<20	<20				
		V _k (m/s)		4,8	3,6	2,9	2,4	1,8	1,6	1,4	1,2	1,0		
180	50,0	X (m)		2,6	2,2	2,0	1,8	1,6	1,5	1,4	1,3	1,2		
		ΔP, (Pa)		50	28	18	13	7	6	5	3	2		
-		dB (A)		43	37	32	28	21 2,0	<20	<20 1.6	<20	<20	1.0	
		V _k (m/s) X (m)		5,3 2,9	4,0 2,5	3,2 2,2	2,6 2,0	1,8	1,8 1,7	1,6 1,6	1,3 1,4	1,1 1,3	1,0 1,2	
200	55,6	ΔP, (Pa)		62	35	2,2	16	9	7	6	4	2	2	
		dB (A)		46	40	34	30	24	21	<20	<20	<20	<20	
		V, (m/s)	'		5,0	4,0	3,3	2,5	2,2	2,0	1,7	1,3	1,2	
050	00.4	X (m)			3,1	2,8	2,5	2,2	2,1	2,0	1,8	1,6	1,5	
250	69,4	ΔP, (Pa)			55	35	24	14	11	9	6	4	3	
		dB (A)			45	40	36	29	27	24	20	<20	<20	
		V _k (m/s)			5,9	4,8	4,0	3,0	2,6	2,4	2,0	1,6	1,5	1,2
300	83,3	X (m)			3,7	3,3	3,0	2,6	2,5	2,3	2,1	1,9	1,9	1,7
***	00,0	ΔP, (Pa)			79	50	35	20	16	13	9	6	5	3
		dB (A)			49	44	40	34	31	29	25	20	<20	<20
		V _k (m/s)				6,3	5,3	4,0	3,5 3,3	3,2 3,1	2,6 2,9	2,1 2,6	2,0 2,5	1,6 2,2
400	111,1	X (m) ΔP, (Pa)				4,4 90	4,0 62	3,5 35	28	22	16	10	9	6
		dB (A)				51	47	41	38	36	32	27	25	20
		V, (m/s)						5,0	4,4	4,0	3,3	2,6	2,5	2,0
	400.0	X (m)						4,4	4,1	3,9	3,6	3,2	3,1	2,8
500	138,9	ΔP, (Pa)						55	43	35	24	16	14	9
		dB (A)						46	44	41	37	32	31	26
		V _k (m/s)							5,3	4,8	4,0	3,2	3,0	2,4
600	166,7	X (m)							5,0	4,7	4,3	3,8	3,7	3,3
***	100,1	ΔP, (Pa)							62	50	35	22	20	13
		dB (A)							48	46	42	37	35	30
		V _k (m/s) X (m)								5,5 5,5	4,6 5,0	3,7 4,5	3,5 4,3	2,8 3,9
700	194,4	ΔP, (Pa)								69	48	30	27	17
		dB (A)								50	45	40	39	34
		V _r (m/s)									5,3	4,2	4,0	3,2
	000.0	X (m)									5,7	5,1	5,0	4,4
800	222,2	ΔP, (Pa)									62	40	35	22
		dB (A)									49	44	42	37
		V _k (m/s)										4,8	4,5	3,6
900	250,0	X (m)										5,8	5,6	5,0
		ΔP, (Pa)										50	44	28
<u> </u>	<u> </u>	dB (A)		imbologia)				47	45	40
		V _k (m/s)		: Caudal c			0						5,0	4,0
1000	277,8	X (m)	A	_k : Área efe	ectiva de in	suflação e	em m²						6,2 55	5,5 35
		ΔP, (Pa) dB (A)	l V	k: Velocida	ide etectiv	a de insufl	açao em n	n/s					48	43
—		V _ν (m/s)		ÄAlcance									40	4,8
		X (m)		;: Perda de B (A): Níve			a am dB /A	, I						6,6
1200	333,3	ΔP, (Pa)		ף (ע). ואוענ	or de poter		a GIII UD (F	<u> ۷</u>						50
		dB (A)												47
		,												


Quadro de selecção

Para os quadros de selecção com descarga lateral:

- O difusor está situado no eixo longitudinal do tecto, junto à parede, num recinto de dimensões:

L = Comprimento, A = Largura e I = Comprimento do difusor.

$$(A - I) / L = 0.5$$

- O tipo de jacto é aderente (efeito coanda), ou seja, o difusor é montado à face do tecto.

Para os quadros de selecção com descarga vertical:

- O difusor está situado no centro do tecto num recinto quadrado.
- Disposição de descarga vertical, em jacto livre.
- O comprimento do difusor é inferior a 0,5 vezes a largura do recinto e inferior a 0,5 vezes o alcance.
- -A pressão P, é medida na conduta antes do pleno.
- A altura do recinto é de 3 ± 0,5 m.
- O ΔT é igual a -10 °C, diferença entre a temperatura do recinto e a temperatura do ar insuflado.
- A velocidade máxima na zona ocupada é de 0,25 m/s.

Exemplo de selecção (descarga lateral)

Exemplo

Necessidades requeridas:

Caudal de ar	600 m ³ /h
Alcance	4 m
Nível de potência sonora	Inferior a 40 dB(A)
Perda de carga requerida	Inferior a 15 Pa
Velocidade efectiva	2,5 a 3 m/s
Direcção do fluxo de ar	Lateral

Selecção:

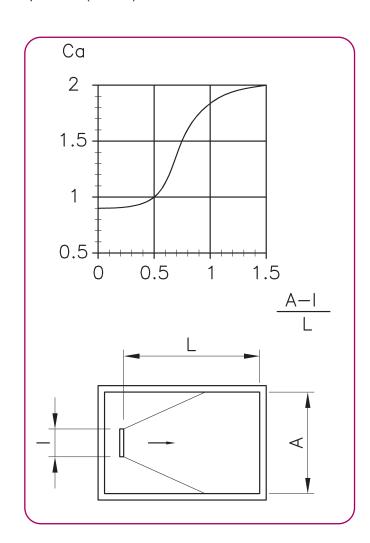
Por meio do quadro de selecção (pág. 7) de difusores lineares com descarga lateral, e seguindo o critério geral de que, para instalações de conforto, a velocidade recomendada neste tipo de difusores é de 2,5 a 4,5 m/s, obtém-se:

Difusor S-74-25 4 vias, 1.500 mm. de comprimento.

Q (Caudal de ar)	600 m³/h (ou 166,7 l/s)
V _k (Velocidade efectiva)	2,5 m/s
X (Alcance)	4,1 m
P, (Perda de carga)	13 Pa
dB(A) (Nível de potência sonora	35

Observando os resultados, os dados obtidos ajustam-se às necessidades do projecto.

Factor de correcção em função da abertura da comporta.


Os dados técnicos apresentados nos quadros de selecção dos difusores S-74-25 são para difusores incorporando comporta deslizante aberta a 100%.

Ao modificar a percentagem de abertura, o alcance real mal varia, mas ainda assim o nível sonoro e a perda de carga seriam modificados como segue:

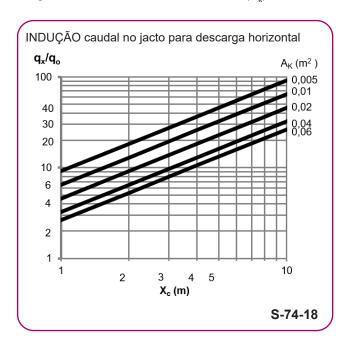
COMPORTA	dB(A) NÍVEL SONORO	ΔP PERDA DE CARGA			
100% aberta	Valor dos quadros	Valor dos quadros			
75% aberta	+ 2 dB	x 1,33			
50% aberta	+ 5 dB	x 1,67			
25% aberta	+ 10 dB	x 5			

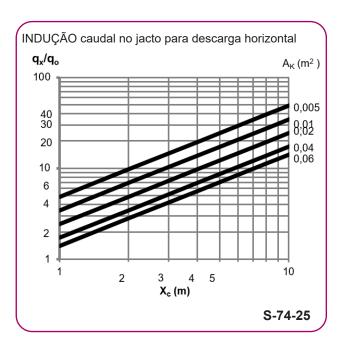
Factor de correcção por relação largura/comprimento do recinto:

Este factor denomina-se C_a . É dado pela divisão entre a largura menos o comprimento do difusor e o comprimento do recinto. É aplicável aos difusores lineares com descarga lateral. Nos difusores com descarga vertical o valor C_a é igual a 1, já que foram ensaiados num recinto quadrado (A/L = 1).

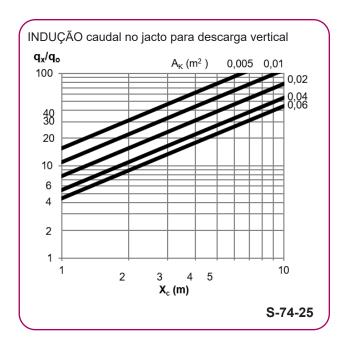
Quadro de selecção (portafiltros)

Nota: A perda de carga (Pa) inclui um filtro classe G-2.

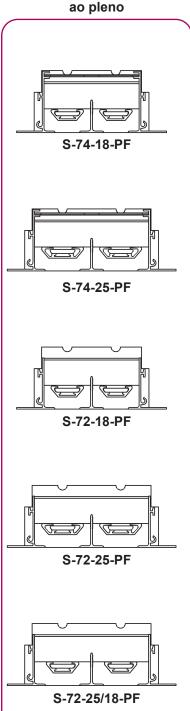

Este quadro de selecção baseia-se em ensaios de laboratório segundo as normas ISO-5219 (UNE 100.710) e ISO-5135 e 3741.

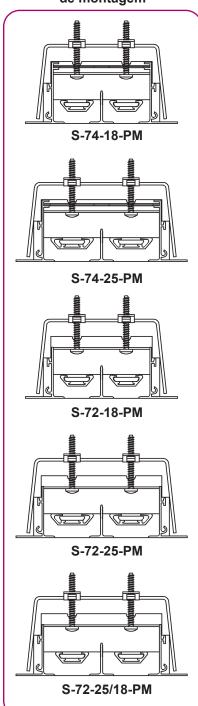

					Compri	mento em m	ım e número	de vias			
(Q	Dim	600.2	600-4	900-3	600-5	900-4	900-5	1200-4	1200-5	1500-5
m³/h	l/s	Dim.	600-3	600-4	900-3	600-5	1200-3	1500-3	1200-4	1500-4	1500-5
80	22,2	dB (A)	<20								
		Ps _t (Pa)	3		,						
100	27,8	dB (A)	<20	<20]						
	27,0	Ps _t (Pa)	5	3							
160	44,4	dB (A)	<20	<20	<20						
100	77,7	Ps _t (Pa)	14	8	6						
200	55,6	dB (A)	20	<20	<20	<20	<20				
	33,0	Ps _t (Pa)	22	12	10	8	5				
300	83,3	dB (A)	29	25	22	20	<20	<20	<20		
300	05,5	Ps _t (Pa)	49	28	22	18	12	8	7		_
400	111,1	dB (A)	36	31	28	26	24	21	20	<20	
400	111,1	Ps _t (Pa)	87	49	39	31	22	14	12	8	
500	138,9	dB (A)	41	36	33	31	29	26	25	22	<20
300	130,9	Ps _t (Pa)	136	77	61	49	34	22	19	12	8
600	166,7	dB (A)		40	37	36	33	30	29	26	23
000	100,7	Ps _t (Pa)		111	87	71	49	31	28	18	11
700	194,4	dB (A)			41	39	36	33	32	29	26
700	194,4	Ps _t (Pa)			119	96	67	43	38	24	15
800	222,2	dB (A)					39	36	35	32	29
800	222,2	Ps _t (Pa)					87	56	49	31	20
000	250.0	dB (A)					42	39	38	35	32
900	250,0	Ps _t (Pa)					111	71	62	40	25
1000	077.0	dB (A)						41	40	37	34
1000	277,8	Ps _t (Pa)						126	77	49	31
4200	222.2	dB (A)							44	41	38
1200	333,3	Ps _t (Pa)							111	71	45
4400	200.0	dB (A)								45	42
1400	388,9	Ps _t (Pa)								96	62
4000	444.4	dB (A)								48	45
1600	444,4	Ps _t (Pa)								126	80
4000	500.0	dB (A)							'		47
1800	500,0	Ps _t (Pa)									102
	555.0	dB (A)									50
2000	555,6	Ps _t (Pa)									126

Coeficientes de indução

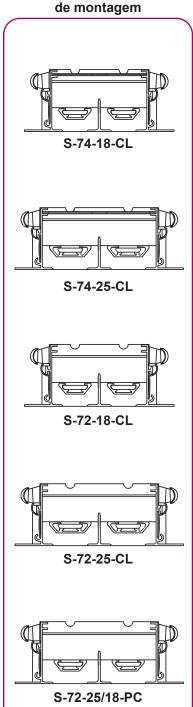

Efeito de indução

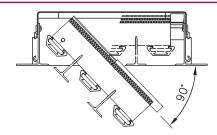
É possível conhecer igualmente o caudal de ar insuflado dentro do recinto por meio do factor (q_x/q_o) que é determinado pelos parâmetros X_c em m (alcance corrigido) para difusores com descarga lateral, Y (alcance em m) para difusores com descarga vertical e a área efectiva em m² (A_{ν}) .




Tipos de difusores lineares

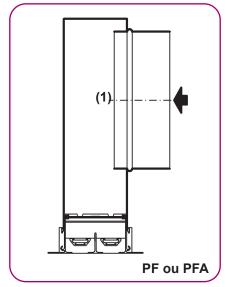
Nesta página apresentamos a secção esquemática dos difusores lineares, nas suas diferentes versões e sistemas de fixação do plano, bem como o modelo portafiltros.


Difusores aparafusados ao pleno

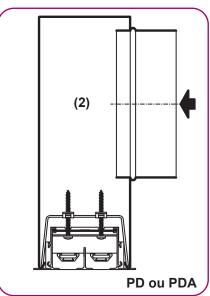


Difusores com ponte de montagem

Difusores com molas de montagem



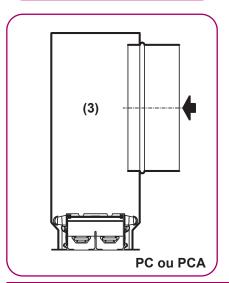
S-72-25/FF Suporte do filtro de retorno


Tipos de plenos (PF, PD, PC)

Estes três tipos de pleno são adaptáveis a todos os difusores lineares da SÉRIE 70, tanto de insuflação como de retorno. Todas as versões dispõem de patilhas para pendurar, que estão dobradas para facilitar o transporte.

Pleno PF ou PFA

Os plenos são fornecidos de fábrica fixados ao difusor mediante parafusos (1).

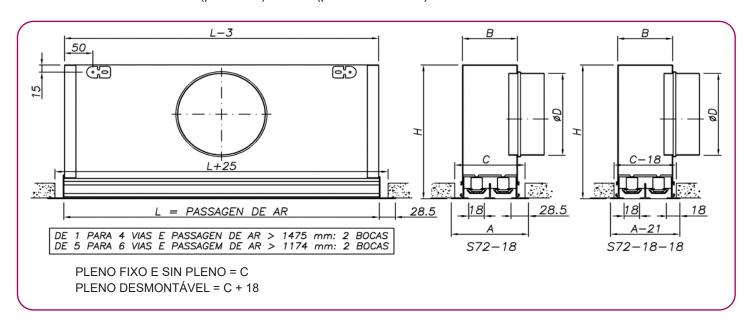


Pleno PD ou PDA

Esta versão corresponde ao pleno desmontável, que é fixado ao difusor mediante pontes (2).

Acesso às pontes de montagem

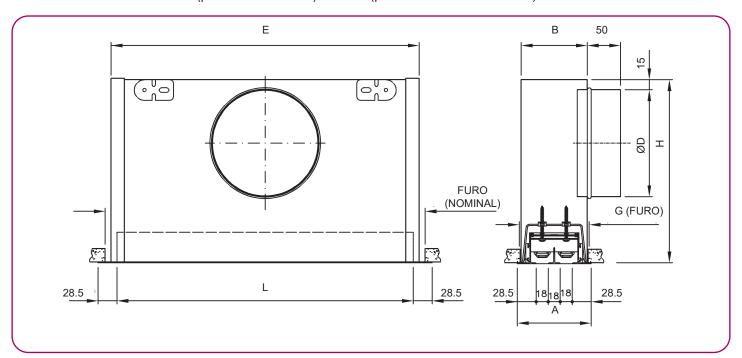
Com uma chave de parafusos através dos orifícios que se encontram nas alhetas direccionais, dissimulados mediante tampões de plástico.


Pleno PC ou PCA

A montagem do pleno sobre o difusor faz-se mediante molas de pressão. Este sistema, para além de ser rápido, permite após a montagem do pleno situar o difusor comodamente sem necessidade de efectuar medições ou recolocações prévias, excepto o modelo S-72-25FF (3).

Dimensões gerais S-74-18-PF

Difusores lineares S-74-18-PF (pleno fixo) ou PFA (pleno fixo isolado)


Difusores lineares S-74-18-PF ou PFA

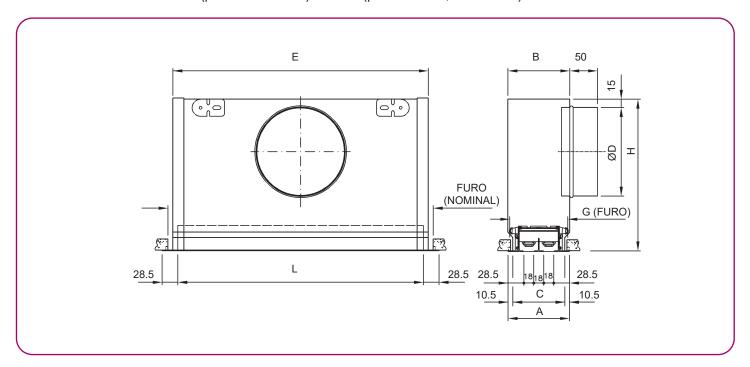
No. slots	Α	В	С	ØD	Н
1	75	40	48	124	225
2	111	76	84	159	275
3	147	112	120	199	325
4	183	148	156	199	325
5	219	184	192	249	375
6	255	220	228	249	375

Nota: Os difusores sem comporta de regulação S-72-18 têm estas mesmas dimensões.

Dimensões gerais S-74-18-PD

Difusores lineares S-74-18-PD (pleno desmontável) ou PDA (pleno desmontável isolado)

Difusores lineares S-74-18-PD ou PDA

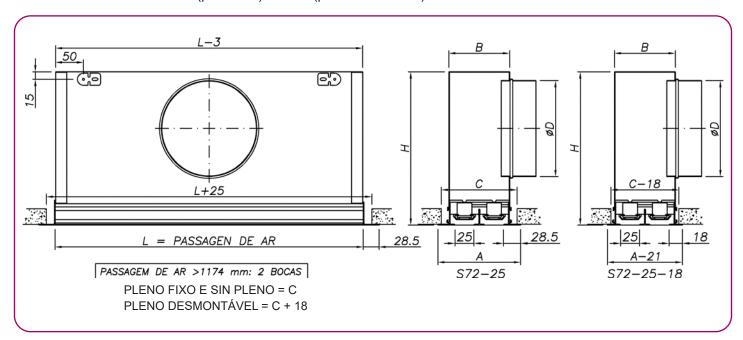

NOMINAL	Nº vias	Α	В	G	L	Е	ØD	Н
	1	75	63	66			124	225
600	2	111	99	102	[589	159	275
600	3	147	135	138	575	589	199	325
Ī	4	183	171	174	1		199	325
	1	75	63	66			124	225
000	2	111	99	102	0.75	000	159	275
900	3	147	135	138	875	889	199	325
	4	183	171	174	1		199	325
	1	75	63	66			124	225
1200	2	111	99	102	1175	1189	159	275
1200	3	147	135	138	1175	1109	199	325
ĺ	4	183	171	174	1		199	325
	1	75	63	66	1475		124	225
1500	2	111	99	102		1489	159	275
1500	3	147	135	138		1409	199	325
	4	183	171	174	1		199	325
	1	75	63	66			2x124	225
1800	2	111	99	102	1775	1789	2x159	275
1800	3	147	135	138] 1//5	1789	2x199	325
	4	183	171	174			2x199	325
	1	75	63	66			2x124	225
2000	2	111	99	102	1075	1989	2x159	275
2000	3	147	135	138	1975	1909	2x199	325
	4	183	171	174]		2x199	325
	1	75	63	66			2x124	225
2025	2	111	99	102	2000	2014	2x159	275
2025	3	147	135	138] 2000	2014	2x199	325
Ī	4	183	171	174]		2x199	325

Nota: Os difusores sem comporta de regulação S-72-18 têm estas mesmas dimensões.

Dimensões gerais S-74-18-PC

Difusores lineares S-74-18-PC (pleno com molas) ou PCA (pleno isolado, com molas)

Difusores lineares S-74-18-PC ou PCA

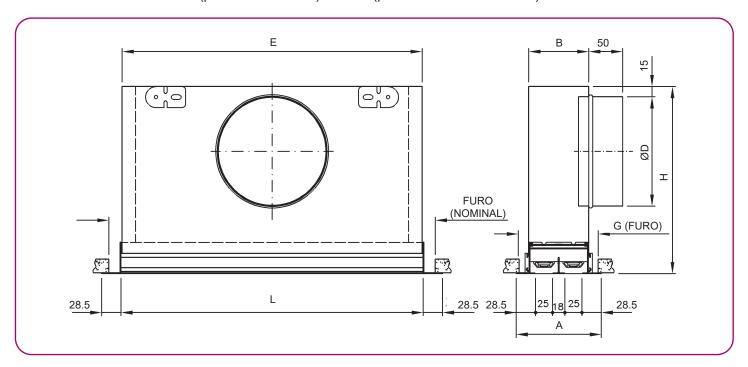

NOMINAL	Nº vias	Α	В	G	L	E	ØD	Н
	1	75	63	66			124	225
000	2	111	99	102		500	159	275
600	3	147	135	138	575	589	199	325
	4	183	171	174]		199	325
	1	75	63	66			124	225
900	2	111	99	102	075	889	159	275
900	3	147	135	138	875	009	199	325
	4	183	171	174]		199	325
	1	75	63	66			124	225
1200	2	111	99	102	1175	1189	159	275
1200	3	147	135	138	11/5	1109	199	325
	4	183	171	174]		199	325
	1	75	63	66	1475		124	225
1500	2	111	99	102		1489	159	275
1500	3	147	135	138		1409	199	325
	4	183	171	174			199	325
	1	75	63	66			2x124	225
1800	2	111	99	102	1775	1789	2x159	275
1600	3	147	135	138] 1775	1709	2x199	325
	4	183	171	174			2x199	325
	1	75	63	66			2x124	225
2000	2	111	99	102	1975	1989	2x159	275
2000	3	147	135	138] 1975	1909	2x199	325
	4	183	171	174			2x199	325
	1	75	63	66			2x124	225
2025	2	111	99	102	2000		2x159	275
2025	3	147	135	138] 2000	2014	2x199	325
	4	183	171	174			2x199	325

Nota: Os difusores sem comporta de regulação S-72-18 têm estas mesmas dimensões.

Dimensões gerais S-74-25-PF

Difusores lineares S-72-25-PF (pleno fixo) ou PFA (pleno fixo isolado)

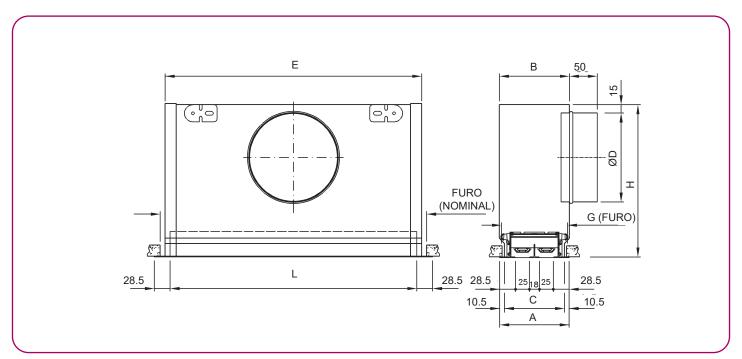
Difusores lineares S-72-25-PF ou PFA


Nº vias	Α	В	С	ØD	Н
1	82	47	55	124	225
2	125	90	98	159	275
3	168	133	141	199	325
4	211	176	184	199	325
5	254	219	227	249	375
6	297	262	270	249	375

Nota: Os difusores sem comporta de regulação S-72-25 têm estas mesmas dimensões.

Dimensões gerais S-74-25-PD

Difusores lineares S-74-25-PD (pleno desmontável) ou PDA (pleno desmontável isolado)


Difusores lineares S-74-25-PD ou PDA

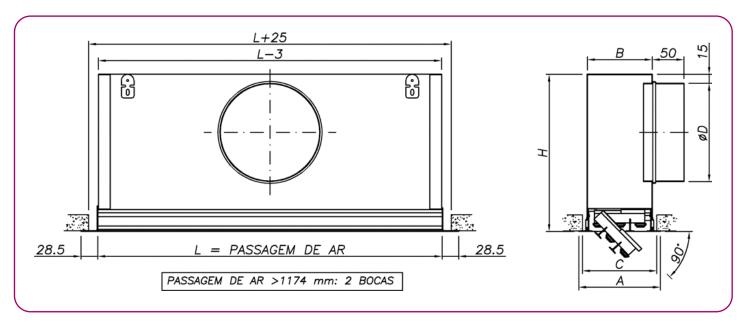
NOMINAL	Nº vias	Α	В	G	L	E	ØD	Н
	1	82	70	73			124	225
600	2	125	113	116		589	159	275
600	3	168	156	159	575	509	199	325
	4	211	199	202	1		199	325
	1	82	70	73			124	225
900	2	125	113	116	875	889	159	275
900	3	168	156	159] 6/5	009	199	325
	4	211	199	202]		199	325
	1	82	70	73			124	225
1200	2	125	113	116	1175	1189	159	275
1200	3	168	156	159] 11/5	1109	199	325
	4	211	199	202]		199	325
	1	82	70	73	1475		124	225
1500	2	125	113	116		1489	159	275
1500	3	168	156	159		1409	199	325
	4	211	199	202]		199	325
	1	82	70	73	1775		2x124	225
1800	2	125	113	116		1789	2x159	275
1600	3	168	156	159] 1775	1709	2x159	325
	4	211	199	202			2x199	325
	1	82	70	73			2x124	225
2000	2	125	113	116	1975	1989	2x159	275
2000	3	168	156	159	1975	1909	2x159	325
	4	211	199	202	1		2x199	325
	1	82	70	73			2x124	225
2025	2	125	113	116	3000	2014	2x159	275
2025	3	168	156	159	2000	2014	2x159	325
	4	211	199	202			2x199	325

Nota: Os difusores sem comporta de regulação S-72-25 têm estas mesmas dimensões.

Dimensões gerais S-74-25-PC

Difusores lineares S-74-25-PC (plenum com molas) ou PCA (plenum isolado, com molas)

Difusores lineares S-74-25-PC ou PCA


NOMINAL	Nº vias	Α	В	G	L	Е	ØD	н
	1	82	83	73			124	225
000	2	125	126	116]	500	159	275
600	3	168	169	159	575	589	199	325
	4	211	212	202			199	325
	1	82	83	73			124	225
000	2	125	126	116	075	889	159	275
900	3	168	169	159	875	009	199	325
	4	211	212	202			199	325
	1	82	83	73			124	225
1200	2	125	126	116	1175	1189	159	275
1200	3	168	169	159] 11/5	1109	199	325
	4	211	212	202			199	325
	1	82	83	73	1475		124	225
1500	2	125	126	116		1489	159	275
1500	3	168	169	159		1469	199	325
	4	211	212	202			199	325
	1	82	83	73			2x124	225
1800	2	125	126	116	1775	1789	2x159	275
1000	3	168	169	159] 1775	1769	2x199	325
	4	211	212	202			2x199	325
	1	82	83	73			2x124	225
2000	2	125	126	116	1975	1989	2x159	275
2000	3	168	169	159] 1975	1909	2x199	325
	4	211	212	202			2x199	325
	1	82	83	73			2x124	225
2025	2	125	126	116	2000	2014	2x159	275
2023	3	168	169	159	2000	2014	2x199	325
	4	211	212	202			2x199	325

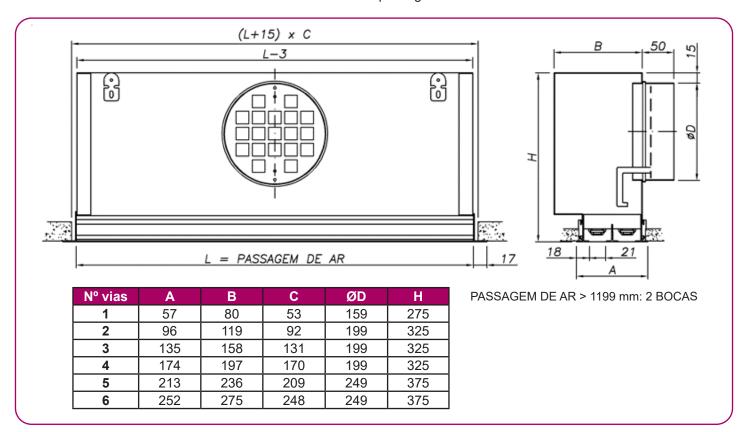
Nota: Os difusores sem comporta de regulação S-72-25 têm estas mesmas dimensões.

Dimensões gerais S-72-25FF

Difusores lineares S-72-25FF porta-filtros rebatível (com ou sem plenum)

Difusores lineares S-72-25FF (com ou sem plenum)

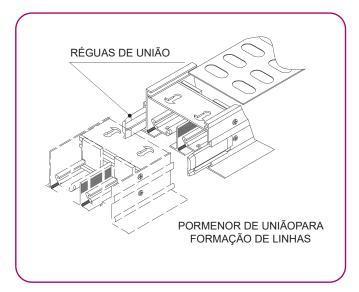
Nº vias	Α	В	С	ØD	Н
3	168	133	159	199	325
4	211	176	202	199	325
5	254	219	245	249	375
6	297	262	288	249	375


Sistema de controlo do plenum

Nos difusores porta-filtros a fixação entre o plenum e o difusor pode ser fixa, sistema PF ou com pontes de montagem, sistema PD.

Dimensões gerais S-72-21/18

Difusores lineares S-72-21/18 com caixilho exterior estreito e passagem de ar 21 mm.


Quadro de selecção S-72-21/18

		Comprimento em mm e número de vias												
(2	Dim.	600-1	900-1	1200-1 600-2	1500-1	900-2 600-3	1200-2 600-4	900-3	1500-2	1200-3 900-4	1500-3	1200-4	1500-4
m³/h	I/s	A _k (m ²)	0,00697	0,01046	0,01395	0,01744	0,02092	0,02790	0,03139	0,03487	0,04185	0,05231	0,05580	0,06975
		V _k (m/s)	2,4	1,6	1,2									
60	16,7	X (m)	1,4	1,1	1,0									
		ΔP, (Pa)	6	3	3									
<u> </u>		dB (A) V _k (m/s)	<20 3,2	<20 2,1	<20 1,6	1,3	1.1	i						
		X (m)	1,8	1,5	1,3	1,1	1,1 1,0							
80	22,2	ΔP, (Pa)	11	5	3	2	1,0							l
		dB (A)	24	<20	<20	<20	<20							
		۷ _، (m/s)	4,0	2,7	2,0	1,6	1,3	1,0						l
400	07.0	X (m)	2,3	1,8	1,6	1,4	1,3	1,1						İ
100	27,8	ΔP, (Pa)	17	8	4	3	2	1						İ
		dB (A)	30	22	<20	<20	<20	<20						
		V _k (m/s)	6,0	4,0	3,0	2,4	2,0	1,5	1,3	1,2	1,0			
150	41,7	X (m)	3,4	2,8	2,4	2,1	2,0	1,7	1,6	1,5	1,4			
'''	,.	ΔP, (Pa)	39	17	10	6	4	2	2	2	1			
		dB (A)	41	33	2	23	<20	<20	<20	<20	<20		1 40	.
		V _k (m/s)	8,0	5,3	4,0	3,2	2,7	2,0	1,8	1,6	1,3	1,1	1,0	
200	55,6	X (m)	4,5	3,7	3,2	2,9	2,6	2,3 4	2,1	2,0	1,8	1,7	1,6	
		ΔP, (Pa) dB (A)	70 49	31 41	17 36	11 31	8 27	22	3 <20	<20	2 <20	1 <20	1 <20	
		V _k (m/s)	40	6,6	5,0	4,0	3,3	2,5	2,2	2,0	1,7	1,3	1,2	1,0
		X (m)		4,6	4,0	3,6	3,3	2,8	2,7	2,5	2,3	2,1	2,0	1,8
250	69,4	ΔP, (Pa)		48	27	17	12	7	5	4	3	2	2	1
		dB (A)		47	42	37	34	28	24	21	<20	<20	<20	<20
		V _k (m/s)			6,0	4,8	4,0	3,0	2,7	2,4	2,0	1,6	1,5	1,2
300	83,3	X (m)			4,8	4,3	3,9	3,4	3,2	3,0	2,8	2,5	2,4	2,1
300	03,3	ΔP, (Pa)			39	25	17	10	8	6	4	3	2	2
		dB (A)			47	42	39	33	29	26	23	<20	<20	<20
		V _k (m/s)				6,4	5,3	4,0	3,5	3,2	2,7	2,1	2,0	1,6
400	111,1	X (m)				5,7	5,2	4,5	4,3	4,0	3,7	3,3	3,2	2,9
	,.	ΔP, (Pa)				45	31	17	14	11	8	5	4	3
		dB (A)				50	47	41	37	34	31	26	25	21
		V _k (m/s)					6,6 6,5	5,0 5,7	4,4 5,3	4,0 5,1	3,3 4,6	2,7 4,1	2,5 4,0	2,0 3,6
500	138,9	X (m) ΔP, (Pa)					48	27	22	17	12	8	7	4
		dB (A)					53	47	43	41	37	33	31	27
		V _k (m/s)					- 55	6,0	5,3	4,8	4,0	3,2	3,0	2,4
		X (m)						6,8	6,4	6,1	5,5	5,0	4,8	4,3
600	166,7	ΔP, (Pa)						39	31	25	17	11	10	6
		dB (A)						52	48	46	42	38	36	32
		V _k (m/s)							6,2	5,6	4,6	3,7	3,5	2,8
700	194,4	X (m)							7,5	7,1	,65	5,8	5,6	5,0
'"	104,4	ΔP, (Pa)							42	34	24	15	13	9
<u> </u>		dB (A)							52	50	46	42	41	36
		V _k (m/s)								6,4	5,3	4,2	4,0	3,2
800	222,2	X (m)								8,1	7,4	6,6	6,4	5,7
		ΔP ₊ (Pa)		Simbologi)		45 54	31 50	20 46	17 44	11 40
<u> </u>		dB (A)		Q: Caudal o						54	6,0	4,8	4,5	3,6
		X (m)	ļ ,	∖ _k : Área efe	ectiva de ir	nsuflação (em m²				8,3	7,4	7,2	6,4
900	250,0	ΔP, (Pa)	\	$\frac{1}{k}$: Velocida	ade efectiv	/a de insuf	lação em r	n/s			39	25	22	14
		dB (A)		(: Alcance							53	49	47	43
		V _ν (m/s)		P: Perda d				,				5,3	5,0	4,0
1,,,,,	077.0	X (m)	\ \ C	lB (A): Nív	ei de potêi	ncıa sonor	a em dB (A	4)				8,3	8,0	7,2
1000	277,8	ΔP, (Pa)										31	27	17
		dB (A)										52	50	46
		· · · / ·												!

Recomendações úteis

Difusores com comprimento superior a 2.000 mm.

Os difusores de comprimento superior a 2.000 mm são fornecidos em peças separadas que se encaixam entre si por réguas de união para perfeito alinhamento, levando os troços da cabeceira ângulos de remate no extremo.

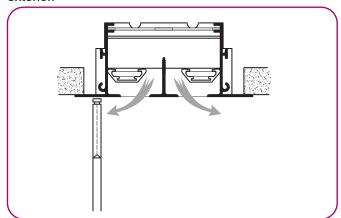
Utilização dos difusores S-70.1 para retorno ou extracção.

Por razões estéticas, é habitual a utilização dos mesmos elementos para insuflação e retorno ou extracção de ar. Quando um difusor linear é utilizado para a extracção, produz-se uma redução da secção efectiva da passagem de ar (A_k) de aproximadamente 25%, relativamente ao mesmo difusor a trabalhar em insuflação.

Dado que a perda de carga em ar e o nível de potência sonora estão directamente relacionados com a velocidade e a área efectiva, é necessário ter em conta esta consideração ao seleccionar um difusor linear para retorno, diminuindo o caudal nessa mesma proporção relativamente à selecção efectuada para insuflação.

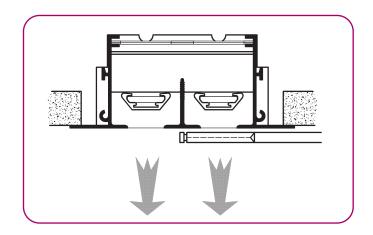
Nos difusores modelo S-74-25, com ranhura de 25 mm. é possível compensar esta perda de secção, utilizando as alhetas direccionais do modelo com ranhura de 18 mm. (S- 74-18) que elimina os inconvenientes descritos. Este difusor é o modelo S-72-25/18.

Velocidade mínima recomendada em zona ocupada ${\bf V}$.


A diferença de temperaturas existente entre o ar frio insuflado e o ar do recinto, proporcionam valores V_z , como velocidade recomendada em zona ocupada para evitar que o jacto de ar caia a curta distância, para difusores com descarga lateral, como segue:

ΔT Ar frio ir		0	6	9	12
V _z (velocidade	CALCITO	0,15	0,20	0,25	0,30
mínima recomenda da em m/s)	Difusor perto da parede interior	0,15	0,25	0,30	0,35

Medição de caudal.


Difusores com descarga lateral.

O caudal, q_{ν} , será obtido pela multiplicação da área efectiva do difusor (A_k) em m^2 e a velocidade na saída (V_k) , medida com anemómetro de fio quente tipo TSI-VELOCICALC situado no centro do caixilho lateral exterior.

Difusores com descarga vertical.

O caudal, q_v , será obtido pela multiplicação da área efectiva do difusor (A_k) em m^2 e a velocidade na saída (V_k) , medida com anemómetro de fio quente tipo TSI-VELOCICALC situado na via de descarga.

ESTE CATÁLOGO É PROPRIEDADE INTELECTUAL.

Fica proibida a reprodução parcial ou total do seu conteúdo sem autorização expressa e formal da KOOLAIR, S.L.

CPT-S70-0524-00

Kerejar

KOOLAIR, S.L.

Calle Urano, 26 Poligono industrial nº 2 – La Fuensanta 28936 Móstoles - Madrid - (España) Tel: +34 91 645 00 33

e-mail: info@koolair.com