

31-1-FS

Grilles for raised access floor

Selection table

Dimension	Q (m³/h)	L _{wA} [dB(A)]	ΔP _t (Pa)	Y (m)	V _k (m/s)
600 x 300	810	20	3	2.8	2.3
	1000	26	5	3.5	2.8
	1300	32	8	4.6	3.6
600 x 600	1450	20	2	3.6	2.1
	1800	26	4	4.5	2.6
	2250	32	6	5.6	3.2

Product description

The KOOLAIR 31-1-FS linear grilles for raised access floors of LxH dimensions are especially designed for floor air supply or return. Fixed horizontal vanes of sturdy profile (0° deflection). Natural unanodized aluminum finish or RAL colour upon request. Can include volume control dampers (-O).

The units have been tested and meet EN13264:2001 requirements for heavy and extra-heavy structural classes.

The supported load is 85 kg/cm², and the evenly distributed load is 2500 kg/m².

Other models

31-15-FS. Linear grille for raised access floor with fixed horizontal vanes (15° deflection) of dimensions 599x599 or 599x299. 31-1/15-FS-G. Linear grille for raised access floor (deflection 0° or 15°) with secondary blades in vertical position.

LEGEND

Q (m³/h): Air flow. L_{wA} [dB(A)]: Sound power level. ΔP_{t} (Pa): Total pressure loss. Y (m): Throw for a maximum velocity of 0.25 m/s at the occupied zone $\Delta T = -10^{\circ}C$ (cold). V_k (m/s): Effective velocity.