# serie

# SUELO PELDANO









## Difusores de suelo DSA, DSA-PR, DSA-HV y DF-CP-MT

## **ÍNDICE**

| Difusores DSA / DSA-PR / DSA-HV | 4  |
|---------------------------------|----|
| Modelos y dimensiones           | 5  |
| DSA Tablas de selección         | 6  |
| DSA Gráficos de selección       | 7  |
| DSA-HV Tablas de selección      | 10 |
| DSA-HV Gráficos de selección    | 11 |
| DSA-PR Tablas de selección      | 12 |
| DSA-PR Gráficos de selección    | 13 |
| Ejemplo de selección            | 16 |
| Codificación                    | 16 |
|                                 |    |
| Difusor <b>DF-CP-MT</b>         | 17 |
| Modelos y dimensiones           | 18 |
| Datos técnicos                  | 20 |
| Ejemplo de selección            | 22 |
| Codificación                    | 22 |
|                                 |    |



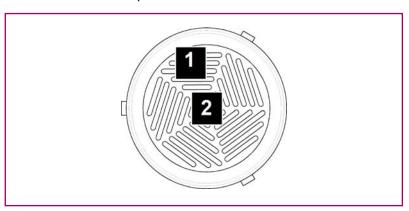
## 

## Difusor de suelo DSA










## Descripción

Difusor circular con impulsión de tipo rotacional, adecuado para montaje en falsos suelos técnicos. Las ranuras del difusor han sido diseñadas para asegurar una impulsión rotacional con alta inducción, obtener reducidas velocidades de aire y un moderado gradiente de temperatura en la zona de habitabilidad. Puede ser utilizado, indistintamente, en instalaciones con caudal de aire variable o constante.

#### Características

- Difusor rotacional circular de suelo, con placa frontal ranurada de chapa de acero de 6 mm de espesor. (DSA)
- Difusor rotacional circular de suelo, con placa frontal perforada de chapa de acero de 6 mm de espesor. (DSA-PR)
- Cestillo y rotacional internos fabricados en chapa
- Difusor rotacional circular de suelo, con placa frontal y cestillo fabricados en material ABS. De alta inducción para grandes caudales de aire (DSA-HV)
- Niveles de inducción muy elevados
- Fácilmente limpiable
- Puede utilizarse con plenum de conexión



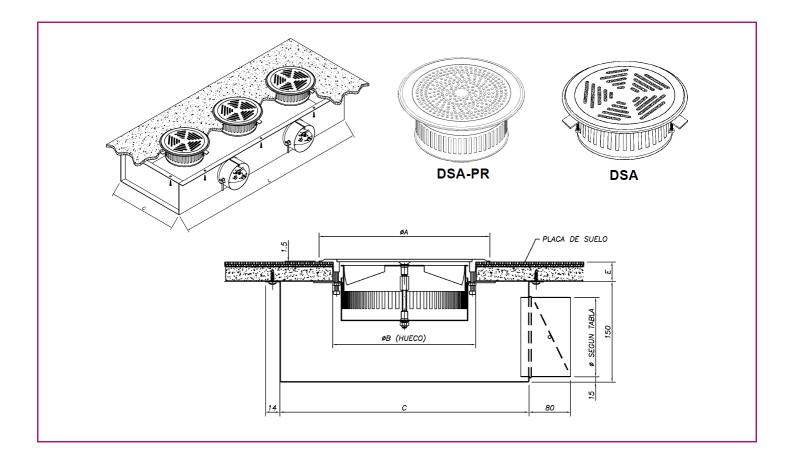
## **Tipología**

DSA: Cargas puntuales elevadas.

**DSA-PR**: De panel perforado, cargas puntuales elevadas.

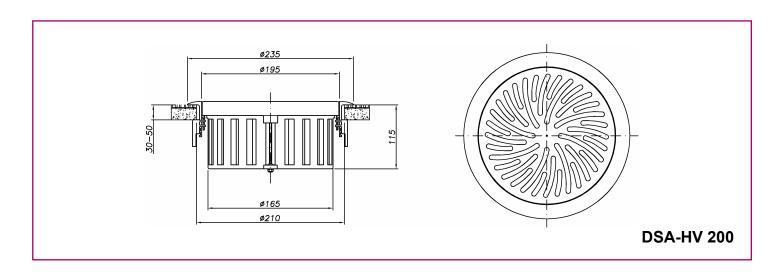
**DSA-HV**: Cargas puntuales estándar.

#### **RESISTENCIA DEL DIFUSOR**


| ·      |        |         |         |  |  |  |  |  |  |
|--------|--------|---------|---------|--|--|--|--|--|--|
| Modelo | Tamaño | Carga 1 | Carga 2 |  |  |  |  |  |  |
| DSA /  | Ø 150  | 2,9     | 2,5     |  |  |  |  |  |  |
| DSA-PR | Ø 200  | 2       | 2,25    |  |  |  |  |  |  |
| DSA-HV | Ø 200  | 2,5     | 2       |  |  |  |  |  |  |

Resistencia en kN

Estudio realizados según norma EN 13264:2001 sobre un área de 30 x 30 mm<sup>2</sup>.




## **Modelos y dimensiones DSA**



| Tamaño    | ØA  | ØВ  | _   |               |                 | L               |                 | Е      |        |
|-----------|-----|-----|-----|---------------|-----------------|-----------------|-----------------|--------|--------|
| Tallialio | ØА  | ם   | ٥   | 1 DIFUSOR     | 2 DIFUSORES     | 3 DIFUSORES     | 4 DIFUSORES     | MÁXIMO | MÍNIMO |
| 150       | 190 | 150 | 225 | 500<br>1 BOCA | 1000<br>2 BOCAS | 1500<br>2 BOCAS | 2000<br>2 BOCAS | 32     | 14     |
| 200       | 240 | 200 | 275 | Ø 100         | Ø 100           | Ø 125           | Ø 125           | 32     | 14     |

<sup>-</sup> Dimensiones para modelos DSA, DSA-PR





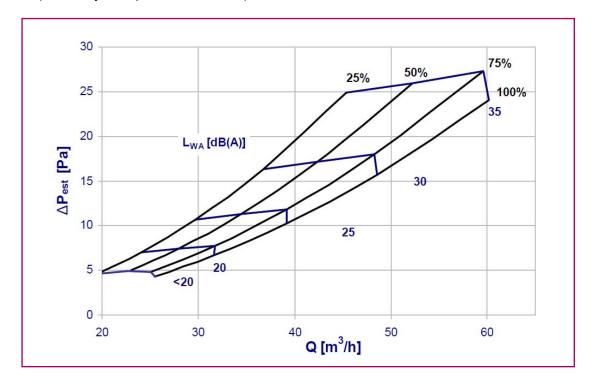
## Datos técnicos. Tabla de selección DSA

Los datos técnicos de ruido y pérdida de carga corresponden a un difusor DSA sin plenum. Los datos técnicos del difusor DSA con plenum se detallan en la tabla sin plenum añadiendo 4 dB (A) al nivel de potencia sonora y aumentar la pérdida de carga un 18%.

El resto de valores son equivalentes.

|        | Difusor de suelo DSA |                           |     |         |     |         |     |     |  |  |  |
|--------|----------------------|---------------------------|-----|---------|-----|---------|-----|-----|--|--|--|
| Tamaño |                      |                           |     | 150     |     |         | 200 |     |  |  |  |
| Q      |                      | $A_k (m^2)$               |     | 0,00495 |     | 0,00945 |     |     |  |  |  |
| (m³/h) | (l/s)                | ΔT (°C)                   | -4  | -6      | -8  | -4      | -6  | -8  |  |  |  |
| 30     | 8,3                  | h <sub>0,25</sub> (m)     | 0,8 | 0,7     | 0,6 |         |     |     |  |  |  |
|        |                      | V <sub>k</sub> (m/s)      |     | 1,7     |     |         |     |     |  |  |  |
|        |                      | $\Delta P_{est}$ (Pa)     |     | 6       |     |         |     |     |  |  |  |
|        |                      | L <sub>w</sub> - [dB(A)]  |     | <20     |     |         |     |     |  |  |  |
| 35     | 9,7                  | h <sub>0,25</sub> (m)     | 0,9 | 0,8     | 0,7 |         |     |     |  |  |  |
|        |                      | V <sub>k</sub> (m/s)      |     | 2,0     |     |         |     |     |  |  |  |
|        |                      | ∆P <sub>est</sub> (Pa)    |     | 8       |     |         |     |     |  |  |  |
|        |                      | L <sub>w</sub> - [dB(A)]  |     | 22      |     |         |     |     |  |  |  |
| 40     | 11,1                 | h <sub>0,25</sub> (m)     | 1,1 | 0,9     | 8,0 |         |     |     |  |  |  |
|        |                      | V <sub>k</sub> (m/s)      |     | 2,2     |     |         |     |     |  |  |  |
|        |                      | $\Delta P_{\rm est}$ (Pa) |     | 11      |     |         |     |     |  |  |  |
|        |                      | L <sub>w</sub> - [dB(A)]  |     | 25      |     |         |     |     |  |  |  |
| 45     | 12,5                 | h <sub>0,25</sub> (m)     | 1,2 | 1,0     | 0,9 |         |     |     |  |  |  |
|        |                      | V <sub>k</sub> (m/s)      |     | 2,5     |     |         |     |     |  |  |  |
|        |                      | ∆P <sub>est</sub> (Pa)    |     | 13      |     |         |     |     |  |  |  |
|        |                      | L <sub>w</sub> - [dB(A)]  |     | 28      |     |         |     |     |  |  |  |
| 50     | 13,9                 | h <sub>0,25</sub> (m)     | 1,3 | 1,2     | 1,0 | 0,7     | 0,6 | 0,5 |  |  |  |
|        |                      | V <sub>k</sub> (m/s)      |     | 2,8     |     |         | 1,5 |     |  |  |  |
|        |                      | ∆P <sub>est</sub> (Pa)    |     | 17      |     |         | 3   |     |  |  |  |
|        |                      | L <sub>w</sub> - [dB(A)]  |     | 31      |     |         | <20 |     |  |  |  |
| 60     | 16,7                 | h <sub>0,25</sub> (m)     | 1,6 | 1,4     | 1,2 | 0,8     | 0,7 | 0,6 |  |  |  |
|        |                      | V <sub>k</sub> (m/s)      |     | 3,4     |     |         | 1,8 |     |  |  |  |
|        |                      | ∆P <sub>est</sub> (Pa)    |     | 24      |     |         | 5   |     |  |  |  |
|        |                      | L <sub>w</sub> - [dB(A)]  |     | 35      |     |         | 20  |     |  |  |  |
| 70     | 19,4                 | h <sub>0,25</sub> (m)     | 1,9 | 1,6     | 1,4 | 0,9     | 0,8 | 0,7 |  |  |  |
|        |                      | V <sub>k</sub> (m/s)      |     | 3,9     |     |         | 2,1 |     |  |  |  |
|        |                      | $\Delta P_{\rm est}$ (Pa) |     | 33      |     |         | 7   |     |  |  |  |
|        |                      | L <sub>w</sub> - [dB(A)]  |     | 39      |     |         | 24  |     |  |  |  |

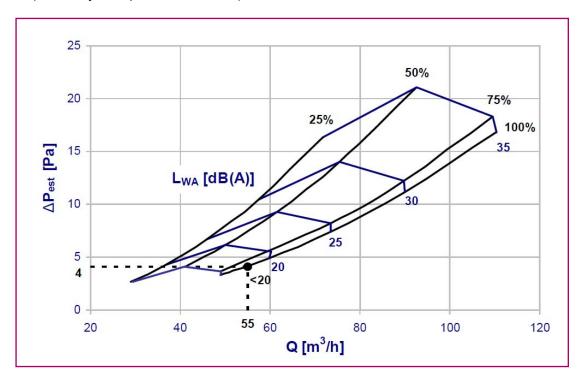
|        |        | Difus                     | or de s | suelo E | DSA |     |         |     |
|--------|--------|---------------------------|---------|---------|-----|-----|---------|-----|
|        | Tamaño |                           |         | 150     |     |     | 200     |     |
|        | Q C    | $A_k (m^2)$               |         | 0,00495 | ,   |     | 0,00945 |     |
| (m³/h) | (l/s)  | ΔT (°C)                   | -4      | -6      | -8  | -4  | -6      | -8  |
| 85     | 23,6   | h <sub>0,25</sub> (m)     | 2,3     | 2,0     | 1,7 | 1,1 | 1,0     | 0,9 |
|        |        | V <sub>k</sub> (m/s)      |         | 4,8     |     |     | 2,5     |     |
|        |        | $\Delta P_{\rm est}$ (Pa) |         | 48      |     |     | 10      |     |
|        |        | L <sub>w</sub> - [dB(A)]  |         | 43      |     |     | 29      |     |
| 100    | 27,8   | h <sub>0,25</sub> (m)     | 2,7     | 2,3     | 2,0 | 1,3 | 1,2     | 1,0 |
|        |        | V <sub>k</sub> (m/s)      |         | 5,6     |     |     | 2,9     |     |
|        |        | $\Delta P_{\rm est}$ (Pa) |         | 67      |     |     | 14      |     |
|        |        | L <sub>w</sub> - [dB(A)]  |         | 47      |     |     | 33      |     |
| 115    | 31,9   | h <sub>0,25</sub> (m)     |         |         |     | 1,5 | 1,3     | 1,2 |
|        |        | V <sub>k</sub> (m/s)      |         |         |     |     | 3,4     |     |
|        |        | $\Delta P_{\rm est}$ (Pa) |         |         |     |     | 18      |     |
|        |        | L <sub>w</sub> - [dB(A)]  |         |         |     |     | 36      |     |
| 130    | 36,1   | h <sub>0,25</sub> (m)     |         |         |     | 1,7 | 1,5     | 1,3 |
|        |        | $V_k(m/s)$                |         |         |     |     | 3,8     |     |
|        |        | $\Delta P_{\rm est}$ (Pa) |         |         |     |     | 23      |     |
|        |        | L <sub>w</sub> - [dB(A)]  |         |         |     |     | 39      |     |
| 150    | 41,7   | h <sub>0,25</sub> (m)     |         |         |     | 2,0 | 1,7     | 1,5 |
|        |        | V <sub>k</sub> (m/s)      |         |         |     |     | 4,4     |     |
|        |        | $\Delta P_{\rm est}$ (Pa) |         |         |     |     | 31      |     |
|        |        | L <sub>w</sub> - [dB(A)]  |         |         |     |     | 43      |     |
| 170    | 47,2   | h <sub>0,25</sub> (m)     |         |         |     | 2,3 | 2,0     | 1,7 |
|        |        | $V_k(m/s)$                |         |         |     |     | 5,0     |     |
|        |        | $\Delta P_{\rm est}$ (Pa) |         |         |     |     | 40      |     |
|        |        | L <sub>w</sub> - [dB(A)]  |         |         |     |     | 46      |     |


| Q (m³/h)               | Caudal                                                             |
|------------------------|--------------------------------------------------------------------|
| AK (m²)                | Área efectiva de impulsión                                         |
| ΔT (°C)                | Diferencia de temperaturas entre ambiente e impulsión              |
| h <sub>0,25</sub> (m)  | Alcance vertical para una velocidad de la vena de aire de 0,25 m/s |
| V <sub>K</sub> (m/s)   | Velocidad efectiva de impulsión                                    |
| ΔP <sub>est</sub> (Pa) | Pérdida de carga (presión estática)                                |
| L <sub>w</sub> [dB(A)] | Nivel de potencia sonora                                           |



## Datos técnicos. Gráficos de selección DSA

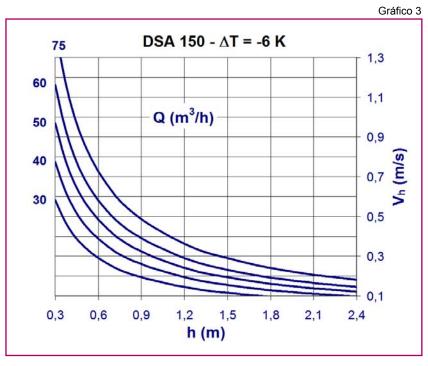
Nivel de potencia sonora % (Porcentaje de apertura del cestillo)


DSA 150 SIN PLENUM Gráfico 1



Nivel de potencia sonora % (Porcentaje de apertura del cestillo)

**DSA 200 SIN PLENUM** 


Gráfico 2





## Datos técnicos. Gráficos de selección DSA

Los gráficos de velocidad de la vena de aire en distintas alturas están estudiados para una diferencia entre la temperatura del aire de impulsión y la temperatura ambiente de - 6 K. Para un diferencial distinto debemos aplicar los coeficientes de la tabla abajo indicada, aplicando la correspondiente fórmula.



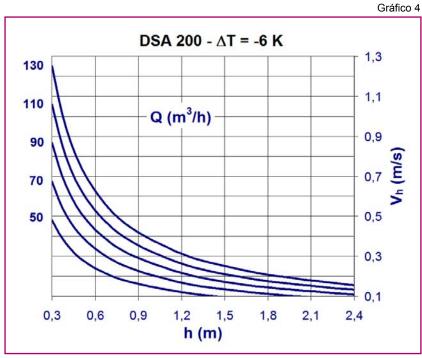
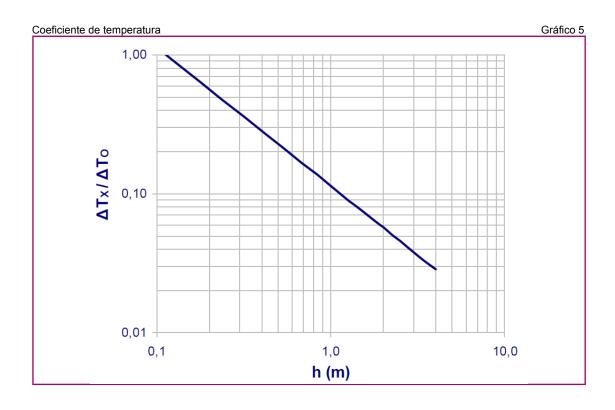
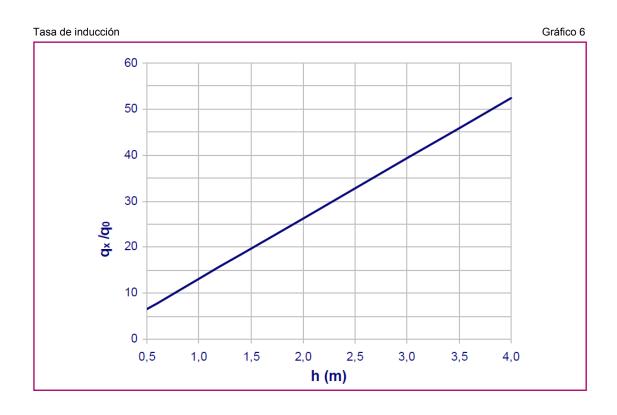



 Tabla coeficiente de corrección


 ΔT (K)
 -4
 -6
 -8
 -10


 C
 1,15
 1
 0,87
 0,76

$$V_h = V_{h \text{ gráfico}} \times C$$



## Datos técnicos. Gráficos de selección DSA







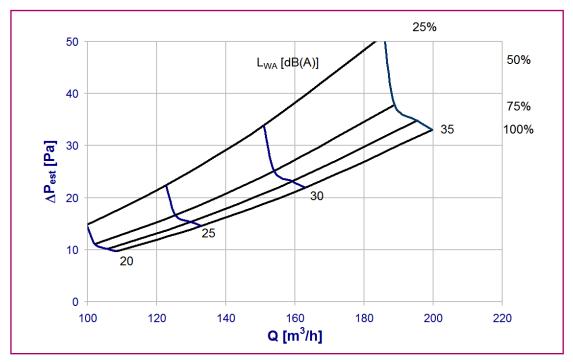
## Datos técnicos. Tabla de selección DSA-HV

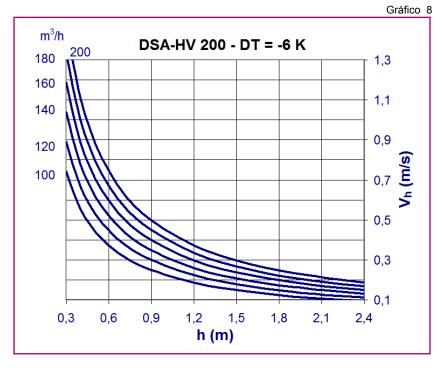
Los datos técnicos de ruido y pérdida de carga corresponden a un difusor DSA-HV sin plenum. Los datos técnicos del difusor DSA-HV con plenum se detallan en la tabla sin plenum añadiendo 4 dB (A) al nivel de potencia sonora y aumentar la pérdida de carga un 18%. El resto de valores son equivalentes.

|                     | DIFUS | OR DE SUEL                       | O DS        | 4-HV |     |
|---------------------|-------|----------------------------------|-------------|------|-----|
|                     |       | Tamaño                           |             | 200  |     |
| Q                   |       | A <sub>k</sub> (m <sup>2</sup> ) | 0,01587     |      |     |
| (m <sup>3</sup> /h) | (l/s) | ΔT (°C)                          | -4          | -6   | -8  |
| 100                 | 27,8  | h <sub>0,25</sub> (m)            | 1,0         | 0,9  | 0,8 |
|                     |       | $V_k$ (m/s)                      |             | 1,8  |     |
|                     |       | ∆P <sub>est</sub> (Pa)           |             | 8    |     |
|                     |       | L <sub>W</sub> - [dB(A)]         |             | <20  |     |
| 120                 | 33,3  | h <sub>0,25</sub> (m)            | 1,2         | 1,1  | 0,9 |
|                     |       | V <sub>k</sub> (m/s)             |             | 2,1  |     |
|                     |       | ∆P <sub>est</sub> (Pa)           |             | 12   |     |
|                     |       | L <sub>W</sub> - [dB(A)]         |             | 22   |     |
| 140                 | 38,9  | h <sub>0,25</sub> (m)            | 1,4         | 1,2  | 1,1 |
|                     |       | V <sub>k</sub> (m/s)             | 2,5         |      |     |
|                     |       | ∆P <sub>est</sub> (Pa)           |             | 16   |     |
|                     |       | L <sub>W</sub> - [dB(A)]         | 26          |      |     |
| 160                 | 44,4  | h <sub>0,25</sub> (m)            | 1,6 1,4 1,2 |      | 1,2 |
|                     |       | V <sub>k</sub> (m/s)             | 2,8         |      |     |
|                     |       | ∆P <sub>est</sub> (Pa)           | 21          |      |     |
|                     |       | L <sub>W</sub> - [dB(A)]         | 30          |      |     |
| 180                 | 50,0  | h <sub>0,25</sub> (m)            | 1,8 1,6 1,  |      | 1,4 |
|                     |       | V <sub>k</sub> (m/s)             | 3,2         |      |     |
|                     |       | ∆P <sub>est</sub> (Pa)           | 27          |      |     |
|                     |       | L <sub>W</sub> - [dB(A)]         | 32          |      |     |
| 200                 | 55,6  | h <sub>0,25</sub> (m)            | 2,0         | 1,8  | 1,6 |
|                     |       | V <sub>k</sub> (m/s)             |             | 3,5  |     |
|                     |       | ∆P <sub>est</sub> (Pa)           |             | 33   |     |
|                     |       | L <sub>W</sub> - [dB(A)]         |             | 35   |     |

| Q (m <sup>3</sup> /h)  | Caudal                                                             |
|------------------------|--------------------------------------------------------------------|
| AK (m²)                | Área efectiva de impulsión                                         |
| ΔT (°C)                | Diferencia de temperaturas entre ambiente e impulsión              |
| h <sub>0,25</sub> (m)  | Alcance vertical para una velocidad de la vena de aire de 0,25 m/s |
| V <sub>K</sub> (m/s)   | Velocidad efectiva de impulsión                                    |
| ΔP <sub>est</sub> (Pa) | Pérdida de carga (presión estática)                                |
| L <sub>w</sub> [dB(A)] | Nivel de potencia sonora                                           |




## Datos técnicos. Gráficos de selección DSA-HV


Los gráficos de velocidad de la vena de aire en distintas alturas están estudiados para una diferencia entre la temperatura del aire de impulsión y la temperatura ambiente de - 6 K. Para un diferencial distinto debemos aplicar los coeficientes de la tabla abajo indicada, aplicando la correspondiente fórmula. Los gráficos de coeficiente de temperatura y tasa de inducción son similares al modelo DSA que se detallan en la página 9.

Nivel de potencia sonora % (Porcentaje de apertura del cestillo)

#### **DSA-HV 200 SIN PLENUM**

Gráfico 7





| ΔT (K) | -4   | -6 | -8   | -10  |
|--------|------|----|------|------|
| С      | 1,15 | 1  | 0,87 | 0,76 |



## Datos técnicos. Tabla de selección DSA-PR

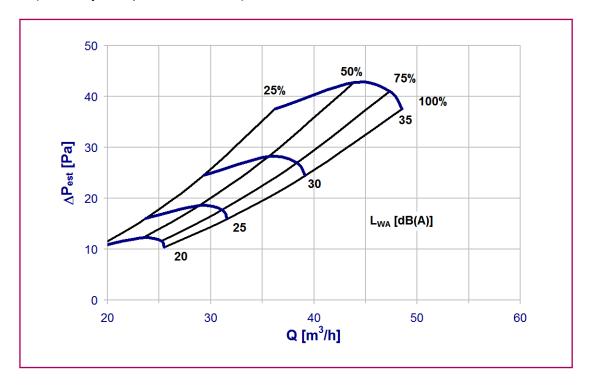
Los datos técnicos de ruido y pérdida de carga corresponden a un difusor DSA-PR sin plenum. Los datos técnicos del difusor DSA-PR con plenum se detallan en la tabla sin plenum añadiendo 4 dB (A) al nivel de potencia sonora y aumentar la pérdida de carga un 18%. El resto de valores son equivalentes.

|                     | Difusor circular de suelo DSA-PR |                                  |     |         |     |         |     |     |  |  |
|---------------------|----------------------------------|----------------------------------|-----|---------|-----|---------|-----|-----|--|--|
| Tamaño              |                                  |                                  |     | 150     |     |         | 200 |     |  |  |
| Q                   |                                  | A <sub>k</sub> (m <sup>2</sup> ) |     | 0,00495 |     | 0,00945 |     |     |  |  |
| (m <sup>3</sup> /h) | (l/s)                            | ΔT (°C)                          | -4  | -6      | -8  | -4      | -6  | -8  |  |  |
| 30                  | 8,3                              | h <sub>0,25</sub> (m)            | 1,1 | 0,9     | 0,8 |         |     |     |  |  |
|                     |                                  | V <sub>k</sub> (m/s)             |     | 2,6     |     |         |     |     |  |  |
|                     |                                  | ΔP <sub>est</sub> (Pa)           |     | 14      |     |         |     |     |  |  |
|                     |                                  | L <sub>w</sub> - [dB(A)]         |     | 24      |     |         |     |     |  |  |
| 35                  | 9,7                              | h <sub>0,25</sub> (m)            | 1,3 | 1,0     | 0,9 |         |     |     |  |  |
|                     |                                  | V <sub>k</sub> (m/s)             |     | 3,0     |     |         |     |     |  |  |
|                     |                                  | ΔP <sub>est</sub> (Pa)           |     | 20      |     |         |     |     |  |  |
|                     |                                  | L <sub>W</sub> - [dB(A)]         |     | 27      |     |         |     |     |  |  |
| 40                  | 11,1                             | h <sub>0,25</sub> (m)            | 1,5 | 1,2     | 1,1 | 0,7     | 0,6 | 0,5 |  |  |
|                     |                                  | V <sub>k</sub> (m/s)             |     | 3,5     |     |         | 1,8 |     |  |  |
|                     |                                  | ΔP <sub>est</sub> (Pa)           |     | 25      |     |         | 5   |     |  |  |
|                     |                                  | L <sub>W</sub> - [dB(A)]         |     | 30      |     |         | <20 |     |  |  |
| 45                  | 12,5                             | h <sub>0,25</sub> (m)            | 1,6 | 1,3     | 1,2 | 0,8     | 0,7 | 0,6 |  |  |
|                     |                                  | V <sub>k</sub> (m/s)             |     | 3,9     |     |         | 2,0 |     |  |  |
|                     |                                  | ΔP <sub>est</sub> (Pa)           |     | 32      |     |         | 6   |     |  |  |
|                     |                                  | L <sub>W</sub> - [dB(A)]         |     | 33      |     |         | <20 |     |  |  |
| 50                  | 13,9                             | h <sub>0,25</sub> (m)            | 1,8 | 1,5     | 1,4 | 0,9     | 0,8 | 0,7 |  |  |
|                     |                                  | V <sub>k</sub> (m/s)             |     | 4,3     |     |         | 2,2 |     |  |  |
|                     |                                  | ΔP <sub>est</sub> (Pa)           |     | 40      |     |         | 8   |     |  |  |
|                     |                                  | L <sub>W</sub> - [dB(A)]         |     | 36      |     |         | 21  |     |  |  |
| 60                  | 16,7                             | h <sub>0,25</sub> (m)            | 2,2 | 1,8     | 1,6 | 1,1     | 1,0 | 0,8 |  |  |
|                     |                                  | V <sub>k</sub> (m/s)             |     | 5,2     |     |         | 2,7 |     |  |  |
|                     |                                  | ΔP <sub>est</sub> (Pa)           |     | 57      |     |         | 12  |     |  |  |
|                     |                                  | L <sub>w</sub> - [dB(A)]         |     | 40      |     |         | 25  |     |  |  |
| 70                  | 19,4                             | h <sub>0,25</sub> (m)            | 2,6 | 2,1     | 1,9 | 1,3     | 1,1 | 0,9 |  |  |
|                     |                                  | V <sub>k</sub> (m/s)             |     | 6,1     |     |         | 3,1 |     |  |  |
|                     |                                  | ΔP <sub>est</sub> (Pa)           |     | 78      |     |         | 16  |     |  |  |
|                     |                                  | L <sub>w</sub> - [dB(A)]         |     | 44      |     |         | 29  |     |  |  |

 $L_W [dB(A)]$ 

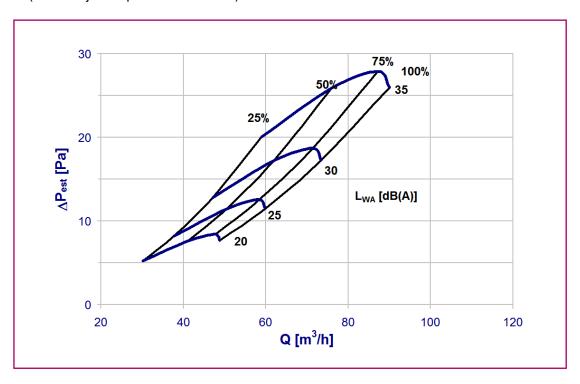
|                     | Difusor circular de suelo DSA-PR |                                  |     |         |     |     |         |     |  |  |  |
|---------------------|----------------------------------|----------------------------------|-----|---------|-----|-----|---------|-----|--|--|--|
|                     |                                  |                                  |     |         |     |     |         |     |  |  |  |
|                     |                                  | Tamaño                           |     |         |     |     |         |     |  |  |  |
|                     | 2                                | A <sub>k</sub> (m <sup>2</sup> ) |     | 0,00495 |     |     | 0,00945 |     |  |  |  |
| (m <sup>3</sup> /h) | (l/s)                            | ΔT (°C)                          | -4  | -6      | -8  | -4  | -6      | -8  |  |  |  |
| 80                  | 22,2                             | h <sub>0,25</sub> (m)            | 2,9 | 2,4     | 2,2 | 1,5 | 1,3     | 1,1 |  |  |  |
|                     |                                  | V <sub>k</sub> (m/s)             |     | 6,9     |     |     | 3,6     |     |  |  |  |
|                     |                                  | $\Delta P_{est}$ (Pa)            |     | 102     |     |     | 21      |     |  |  |  |
|                     |                                  | $L_W$ - [dB(A)]                  |     | 47      |     |     | 32      |     |  |  |  |
| 90                  | 25,0                             | h <sub>0,25</sub> (m)            |     |         |     | 1,7 | 1,5     | 1,2 |  |  |  |
|                     |                                  | $V_k$ (m/s)                      |     |         |     |     | 4,0     |     |  |  |  |
|                     |                                  | ΔP <sub>est</sub> (Pa)           |     |         |     |     | 26      |     |  |  |  |
|                     |                                  | L <sub>w</sub> - [dB(A)]         |     |         |     |     | 35      |     |  |  |  |
| 100                 | 27,8                             | h <sub>0,25</sub> (m)            |     |         |     | 1,8 | 1,6     | 1,3 |  |  |  |
|                     |                                  | V <sub>k</sub> (m/s)             |     |         |     |     | 4,5     |     |  |  |  |
|                     |                                  | ΔP <sub>est</sub> (Pa)           |     |         |     |     | 32      |     |  |  |  |
|                     |                                  | L <sub>w</sub> - [dB(A)]         |     |         |     |     | 38      |     |  |  |  |
| 125                 | 34,7                             | h <sub>0.25</sub> (m)            |     |         |     | 2,3 | 2,0     | 1,7 |  |  |  |
|                     |                                  | V <sub>k</sub> (m/s)             |     |         |     |     | 5,6     |     |  |  |  |
|                     |                                  | ΔP <sub>est</sub> (Pa)           |     |         |     |     | 50      |     |  |  |  |
|                     |                                  | L <sub>w</sub> - [dB(A)]         |     |         |     |     | 43      |     |  |  |  |
| 150                 | 41,7                             | h <sub>0.25</sub> (m)            |     |         |     | 2,8 | 2,4     | 2,0 |  |  |  |
|                     |                                  | V <sub>k</sub> (m/s)             |     |         |     | ′   | 6,7     | ,   |  |  |  |
|                     |                                  | ΔP <sub>est</sub> (Pa)           |     |         |     |     | 72      |     |  |  |  |
|                     |                                  | L <sub>W</sub> - [dB(A)]         |     |         |     |     | 48      |     |  |  |  |

 $\begin{array}{lll} Q \ (m^3/h) & \hbox{Caudal} \\ \\ AK \ (m^2) & \hbox{Área efectiva de impulsión} \\ \\ \Delta T \ (^{\circ}C) & \hbox{Diferencia de temperaturas entre ambiente e impulsión} \\ \\ h_{0,25} \ (m) & \hbox{Alcance vertical para una velocidad de la vena de aire de 0,25 m/s} \\ \\ V_K \ (m/s) & \hbox{Velocidad efectiva de impulsión} \\ \\ \Delta P_{est} \ (Pa) & \hbox{Pérdida de carga (presión estática)} \\ \end{array}$ 


Nivel de potencia sonora



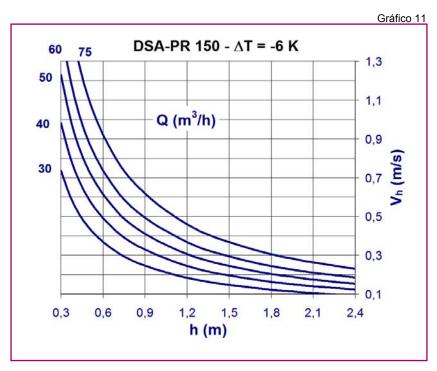
## Datos técnicos. Gráficos de selección DSA-PR


Nivel de potencia sonora % (Porcentaje de apertura del cestillo)

DSA-PR 150 SIN PLENUM Gráfico 9



Nivel de potencia sonora % (Porcentaje de apertura del cestillo)


DSA-PR 200 SIN PLENUM Gráfico 10

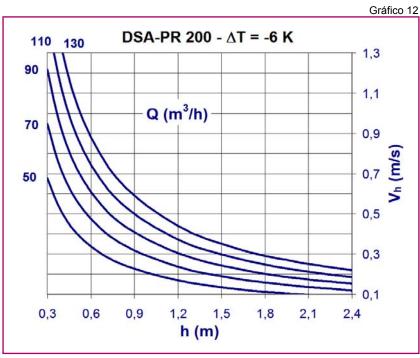
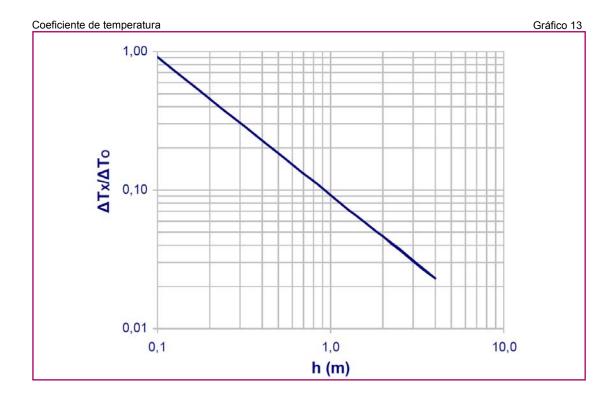


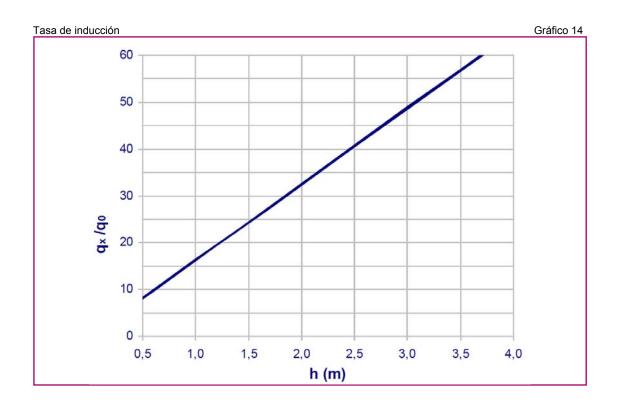


## Datos técnicos. Gráficos de selección DSA-PR

Los gráficos de velocidad de la vena de aire en distintas alturas están estudiados para una diferencia entre la temperatura del aire de impulsión y la temperatura ambiente de - 6 K. Para un diferencial distinto debemos aplicar los coeficientes de la tabla abajo indicada, aplicando la correspondiente fórmula.





Tabla coeficiente de corrección

| ΔT (K) | -4   | -6 | -8   | -10  |
|--------|------|----|------|------|
| С      | 1,15 | 1  | 0,87 | 0,76 |



## Datos técnicos. Gráficos de selección DSA-PR







## Ejemplo de selección DSA

En la selección del elemento para este tipo de difusión, es decir, difusión a nivel de suelo con saltos térmicos no superiores a  $\pm 6$  °C, se recomienda que la velocidad efectiva de salida de aire del difusor ( $V_K$ ) no sea superior a 1,5 – 2 m/s, con el fin de que no se generen corrientes de aire molestas en la zona ocupada (>0.25 m/s); sobre todo en instalaciones con este tipo de difusor debajo de butacas, por ejemplo en auditorios.

A continuación se presenta un ejemplo para explicar la metodología de selección mediante gráficos:

#### Datos de diseño:

Auditorio con 410 butacas. Caudal total de impulsión en zona de butacas 22500 m³/h. Temperatura de impulsión 19 °C, Temperatura ambiente 23 °C. Instalación de un difusor por butaca, caudal por difusor 55 m³/h.

#### Resultados:

Conociendo el caudal por difusor (55 m $^3$ /h), teniendo en cuenta el criterio de selección anteriormente mencionado para este tipo de instalaciones ( $V_K < 2$  m/s), si entramos en la tabla de selección (pág. 6), el modelo apropiado sería DSA-200.

Para obtener el nivel de potencia sonora y pérdida de carga de este modelo de difusor, habría que entrar en el gráfico de selección 2, donde se obtiene:

Pérdida de carga: 4 Pa

Nivel de potencia sonora: <20 dB(A)

Para obtener la velocidad de la vena de aire a la altura del asiento (0,5 m aproximadamente), se entra en el gráfico de selección 4, donde se obtiene:

Velocidad corregida " $V_h$ " a una altura "h" de 0,5 m y con  $\Delta T = -4$  °C:

$$V_h = 0.32 \times 1.15 = 0.37 \text{ m/s}$$

## Codificación. Ejemplo

La codificación describe el modelo solicitado por el cliente.

| DSA    | Difusor de suelo                     |
|--------|--------------------------------------|
| DSA-PR | Difusor de suelo con placa perforada |
| DSA-HV | Difusor de suelo (material ABS)      |
| Ø150   | Tamaño del difusor                   |
| Ø200   | Tamaño del difusor                   |
| ØP     | Plenum de conexión                   |
| -      | Fabricado en chapa de acero          |
| RAL    | Acabados RAL bajo demanda            |

Ejemplo:

DSA-200-P

Difusor circular de chapa de acero con impulsión de tipo rotacional de diámetro 200 mm, con plenum.



## Difusor rotacional múltiple de contrapeldaño DF-CP-MT



DF-CP-MT

### Descripción

Los difusores rotacionales múltiples para peldaño de la serie DF-CP-MT, están formados por una placa frontal rectangular en la que se incorporan de 2 a 6 micro-difusores en ejecución estándar.

Se fabrican en chapa de acero pintado en color negro (RAL 9005) como acabado estándar. Existe la posibilidad de incorporar plenum de conexión (lateral o frontal) en chapa de acero galvanizado.

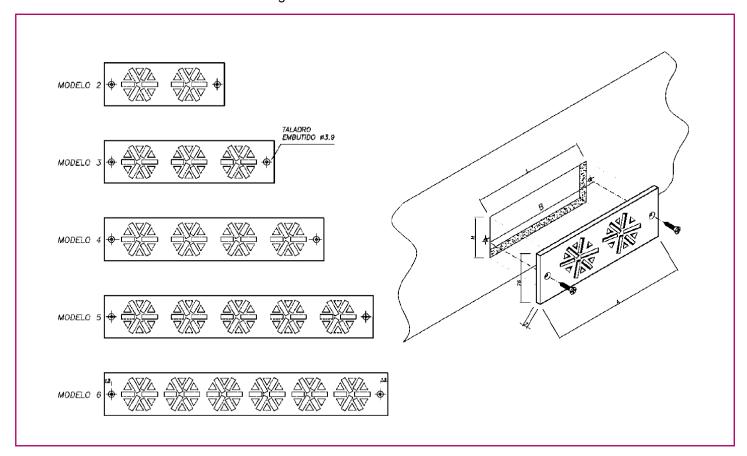
Los difusores se distinguen por su aspecto altamente estético. Bajo demanda pueden pintarse en otro color adaptándose a las necesidades decorativas que se requieran.



## **Aplicaciones**

Los difusores de la serie DF-CP-MT, están diseñados para su utilización en la climatización de teatros, auditorios, cines, etc., permitiendo su baja silueta ubicarlos en la contrahuella de peldaños de altura reducida.

Cuando son utilizados en las salas referidas anteriormente, se instala en la mayoría de los casos, un difusor por butaca, generando un microclima individual que, así mismo, garantiza el necesario aporte de aire de ventilación a cada persona.

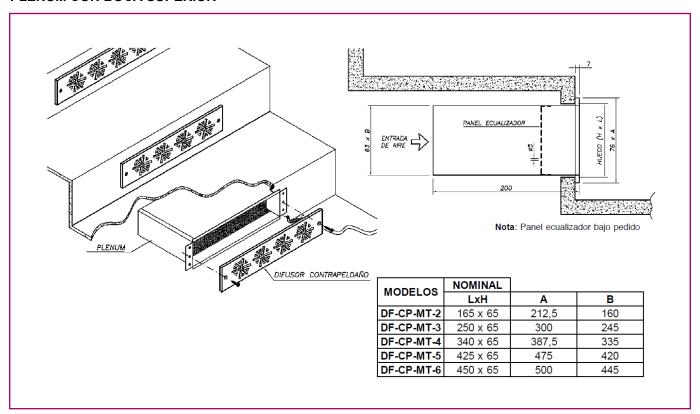

Dado que la distancia desde la placa difusora hasta las piernas de las personas es extremadamente baja, se recomienda trabajar con una diferencia de temperatura (impulsión - ambiente) máxima de  $\pm$  6 °C para evitar corrientes molestas.



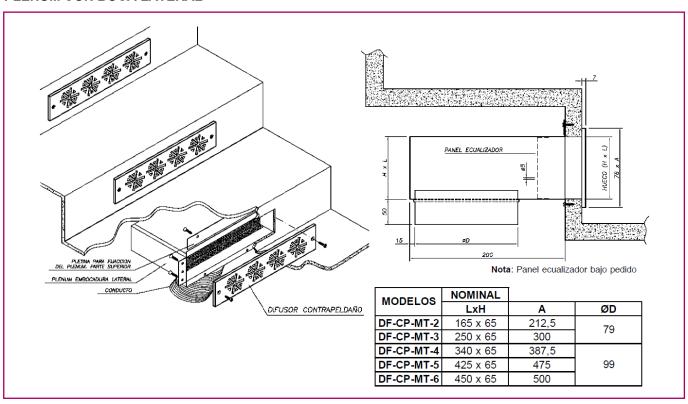
## **Modelos y dimensiones DF-CP-MT**

Los difusores de la serie DF-CP-MT pueden ser fabricados en grupos de 2, 3, 4, 5 ó 6 micro-difusores rotacionales. Bajo demanda del cliente, el difusor puede suministrarse con plenum.

Los diferentes modelos del difusor son los siguientes:




| MODELOS    | NOMINAL  |       |       |
|------------|----------|-------|-------|
| WODELOS    | LxH      | Α     | В     |
| DF-CP-MT-2 | 165 x 65 | 212,5 | 186,5 |
| DF-CP-MT-3 | 250 x 65 | 300   | 274   |
| DF-CP-MT-4 | 340 x 65 | 387   | 361,5 |
| DF-CP-MT-5 | 425 x 65 | 475   | 449   |
| DF-CP-MT-6 | 450 x 65 | 500   | 474   |




## **Modelos y dimensiones DF-CP-MT**

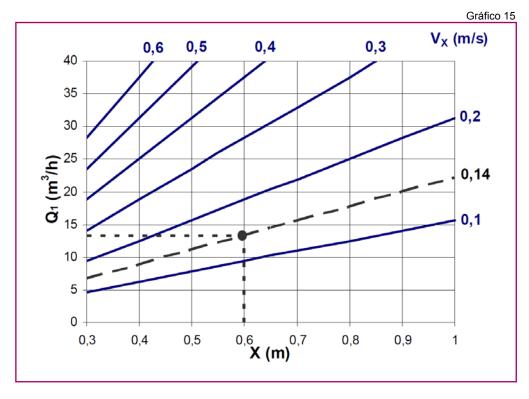
#### PLENUM CON BOCA SUPERIOR



#### PLENUM CON BOCA LATERAL






## **Datos técnicos DF-CP-MT**

#### TABLA DE SELECCIÓN POR NIVEL SONORO:

En función del nivel sonoro deseado se determina el caudal de aire y la pérdida de carga (valor entre paréntesis) de cada tamaño de difusor.

|             | CAUDAL - NIVEL SONORO - PÉRDIDA DE CARGA |          |          |          |          |
|-------------|------------------------------------------|----------|----------|----------|----------|
| DF-CP-MT    | m³/h (Pa)                                |          |          |          |          |
| DI -CF-IVII | 25 dB(A)                                 | 30 dB(A) | 35 dB(A) | 40 dB(A) | 45 dB(A) |
| 2           | 26 (15)                                  | 32 (22)  | 39 (32)  | 48 (48)  | 59 (72)  |
| 3           | 37 (13)                                  | 45 (19)  | 55 (29)  | 67 (42)  | 82 (62)  |
| 4           | 47 (12)                                  | 57 (17)  | 70 (26)  | 85 (38)  | 104 (56) |
| 5           | 56 (11)                                  | 69 (16)  | 84 (24)  | 102 (35) | 125 (52) |
| 6           | 65 (10)                                  | 80 (15)  | 98 (23)  | 119 (33) | 145 (49) |

En el gráfico inferior se puede obtener la velocidad del aire (de un micro-difusor) medida a 100 mm del suelo en función de la distancia al mismo. Dependiendo del número de elementos que formen la placa se multiplicará el valor de velocidad obtenido en el gráfico por el de la tabla 2.



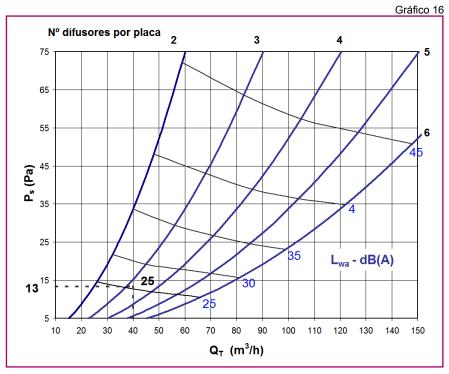
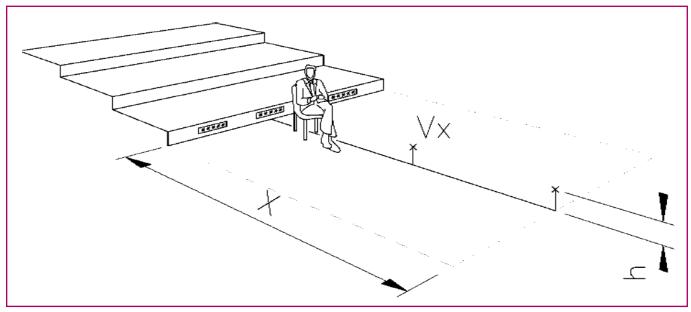

| Nº microdifusores | 2    | 3    | 4 | 5    | 5    |
|-------------------|------|------|---|------|------|
| $V_{x}$           | 1,41 | 1,73 | 2 | 2,24 | 2,45 |

Tabla 2: Valores de corrección de 2 a 6 micro-difusores




## **Datos técnicos DF-CP-MT**

En el gráfico inferior se obtiene el nivel sonoro y la pérdida de carga por placa teniendo en cuenta el número de difusores que incorpora.



#### **DIBUJO EXPLICATIVO:**



#### SIMBOLOGÍA:

- **Q**<sub>1</sub> Caudal de impulsión por elemento de difusor en m<sup>3</sup>/h.
- **Q**<sub>T</sub> Caudal de impulsión por placa en m<sup>3</sup>/h
- $\mathbf{V}_{\mathbf{x}}$  Velocidad de un elemento del difusor a la distancia X, en m/s.
- X Distancia al difusor, en m.
- h Altura del punto de medición sobre el suelo, en m.
- **Ps** Pérdida de carga de la placa, en Pa.
- dB(A) Nivel de potencia sonora de la placa.



## Ejemplo de selección DF-CP-MT

La tabla de selección y el gráfico que figuran en el presente catálogo para los diferentes modelos existentes, corresponden a difusores sin plenum y nos permiten obtener, a partir de un caudal de impulsión por placa de difusor, los siguientes parámetros:

- -Pérdida de carga y nivel de potencia sonora generados en el difusor.
- -Velocidad a una distancia determinada, medida a una altura de 0,1 m del suelo.

Expliquemos la metodología mediante un ejemplo:

#### Datos de partida

En un teatro con 200 butacas se van a instalar difusores de peldaño **DF-CP-MT**. El caudal total a impulsar por este tipo de difusores es de 8000 m³/h, es decir, se impulsa **40 m³/h** por difusor. Se selecciona e instala el difusor **DF-CPMT-3**, en la huella del peldaño.

Altura de montaje sobre el suelo: h = 0.1 mDistancia al difusor (medida de velocidad): X = 0.6 mAltura de punto de medición sobre el suelo:  $h_1 = 0.1 \text{ m}$ Caudal por micro-difusor:  $Q_1 = 13.3 \text{ m}^3/h$ 

#### Resultados

Entrando en el gráfico de potencia sonora, en el gráfico de velocidades y aplicando el factor de corrección por número de micro-difusores, se obtiene:

Pérdida de carga total: **13 Pa** Nivel de potencia sonora: **25 dB(A)** 

Velocidad corregida a una distancia de 0.6 m del difusor: V<sub>x</sub> = 0,24 m/s

## Codificación. Ejemplo

La codificación describe el modelo solicitado por el cliente.

| DF-CP-MT | Difusor rotacional múltiple para peldaño                  |
|----------|-----------------------------------------------------------|
|          |                                                           |
| 26       | N° de micro-difusores                                     |
|          |                                                           |
| PS<br>PL | Plenum de conexión superior<br>Plenum de conexión lateral |
|          |                                                           |
| RAL 9005 | Acabado estándar color negro satinado                     |



Ejemplo de codificación:

DF-CP-MT-5-Ral 9005 Satinado

Difusor rotacional múltiple para peldaño, con 5 micro-difusores, para montaje estándar con tornillos y pintado en RAL 9005.



#### ESTE CATÁLOGO ES PROPIEDAD INTELECTUAL.

Queda prohibida la reproducción parcial o total de su contenido sin autorización expresa y fehaciente de KOOLAIR, S.A.



Koolair, S.A.
Polígono Industrial nº 2 - La Fuensanta
28936 Móstoles - Madrid (España)
Tel +34 91 645 00 33
Fax +34 91 645 69 62
www.koolair.com