

série DF-47 NARROW

Diffuseur linéaire moyens-longue portée

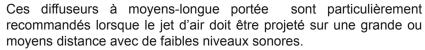
www.koolair.com

SOMMAIRE

Diffuseur linéaire DF-47-NARROW	2
Dimensions	3
Types et système de raccordement	4
Montage	5
Tableau de sélection	6
Codification	7

Diffuseur linéaire moyens-longue portée DF-47-NARROW

Le diffuseur linéaire de moyens-longue portée DF-47-Narrow-A-L, passage de l'air A (mm) et longueur L (mm).


Il est composé d'un tambour qui permet la rotation nécessaire à l'orientation du flux d'air dans un angle de ± 30 (buse linéaire).

Grâce a sa fente étroite il offrant un niveau esthétique élevé tandis que le confort necessaire un froid et chaleur pour couvrir des instalations moyens et longues portée.

Ce diffuseur est indiqué pour une installation à la fois le plafond et le mur.

Il est particulièrement adapté pour un débit variable, même s'il a été conçu pour fonctionner également avec un débit constant.

Ils sont donc préconisés pour les complexes omnisports, les locaux comercial, mezzanines, magasins, maisons etc.

Ce diffuseur peut être utilisé comme un retour. Intercaler des diffuseurs de retour avec des diffuseurs de soufflage dans la

même ligne continue permet d'associer esthétique et fonctionnalité.

Construit en extrusions d'aluminium.

Il peut incorporer amortisseur directionel (RFS06), plénum (latéral ou superieur) en tôle d'acier galvanisé (isolé (-PFA) ou non isolée à l'intérieur (-PF)).

Il existe deux modèles d'exécution plénum, fixes ou démontable.

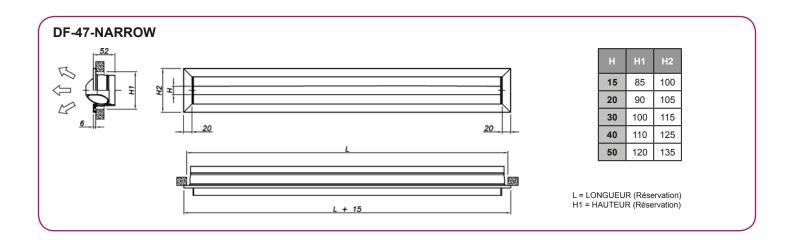
Si le plénum incorpore un clapet de régulation intégré dans la bouche de connexion, amortisseur RFS06 dans le diffuseur est annulé.

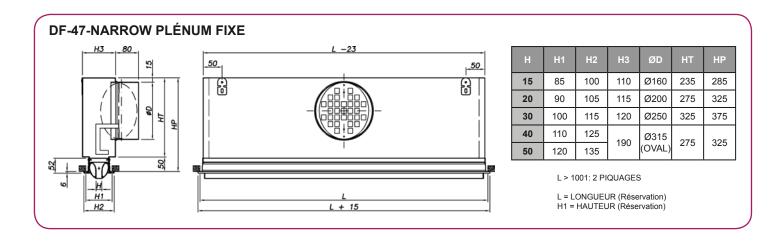
Dans le modèles DF-47-Narrow-IC et DF-47-Narrow-CC le cadre et conduit sont construits en acier galvanisé et le diffuseur l'aluminium.

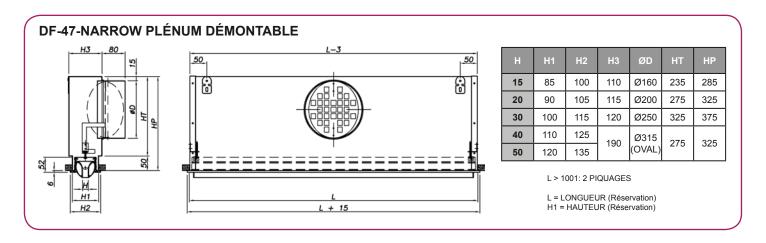
Finition standard aluminium anodisé ou peint en blanc brillant RAL9010.

Mécanisme et montage

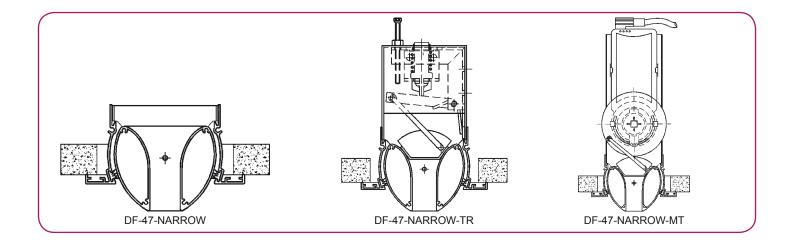
Systèmes de montage du diffuseur disponibles sont répertoriés à la page 5.

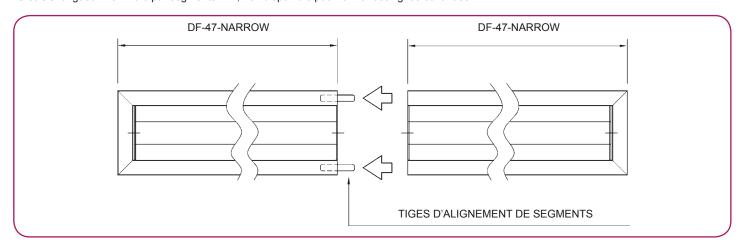

La commande motorisée - MT déplace le diffuseur dans le sens vertical (vers le haut et vers le bas) sur un angle d'environ ±30.


Un moteur doit être présent pour chaque diffuseur, y compris pour les regroupements de plusieurs unités.

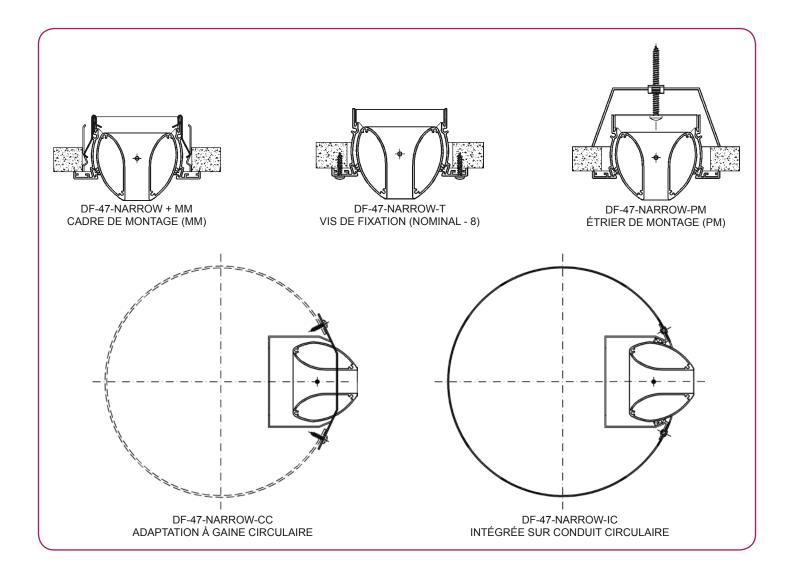

L'option d'autorégulation thermique -TR est également disponible.

Dimensions





Types


Système de raccordement

IC et CC longueur maximale par segments 2 m, non disponible pour former des lignes continues.

Montage

Tableau de sélection

	ý	Taille	15 - 1000		20 - 1000			30 - 1000		40 - 1000			50 - 1000				
(m³/h)	(l/s)	A _k (m²)		0,011		0,014			0,028			0,037			0,047		
200	55,6	X _{0,3} X _{0,5} X _{1,0} (m)	6,0	3,6	1,8												
		ΔP_{st} (Pa)		10													
		L _{wA} - dB(A)		18													
300	83,3	$X_{0,3} X_{0,5} X_{1,0} (m)$	8,9	5,4	2,7	7,7	4,6	2,3									
		ΔP_{st} (Pa)		23			12										
		L _{wA} - dB(A)		25			18					_					
400	111,1	$X_{0,3} X_{0,5} X_{1,0} (m)$	11,9	7,1	3,6	10,3	6,2	3,1	7,4	4,4	2,2						
		∆P _{st} (Pa)		41			21			9							
		L _{wA} - dB(A)		30			24			19					_		
500	138,9	$X_{0,3} X_{0,5} X_{1,0} (m)$	14,9	8,9	4,5	12,9	7,7	3,9	9,3	5,6	2,8	8,0	4,8	2,4	l		
		∆P _{st} (Pa)		64			33			15			8				
		L _{wA} - dB(A)		34			29			25			20				
600	166,7	$X_{0,3} X_{0,5} X_{1,0} (m)$	17,9	10,7	5,4	15,5	9,3	4,6	11,1	6,7	3,3	9,6	5,8	2,9	8,6	5,1	2,6
		ΔP _{st} (Pa)		91			48			21			12			8	
		L _{wA} - dB(A)		37			33			29			24			25	
700	194,4	$X_{0,3} X_{0,5} X_{1,0} (m)$	20,8	12,5	6,2	18,1	10,8	5,4	13,0	7,8	3,9	11,2	6,7	3,4	10,0	6,0	3,0
		ΔP _{st} (Pa)		124			65			29			16			11	
		L _{wA} - dB(A)		40			37			33			28			28	
800	222,2	$X_{0,3} X_{0,5} X_{1,0} (m)$	23,8	14,3	7,1	20,7	12,4	6,2	14,8	8,9	4,4	12,8	7,7	3,8	11,4	6,9	3,4
		ΔP _{st} (Pa)		163			85			38			21			14	
		L _{wA} - dB(A)		42			40			36			31			31	
1000	277,8	$X_{0,3} X_{0,5} X_{1,0} (m)$				25,8	15,5	7,7	18,5	11,1	5,6	16,0	9,6	4,8	14,3	8,6	4,3
		ΔP _{st} (Pa)					133			59			33			22	
		L _{wA} - dB(A)					45			42			37			36	
1250	347,2	$X_{0,3} X_{0,5} X_{1,0} (m)$							23,2	13,9	7,0	20,0	12,0	6,0	17,9	10,7	5,4
		ΔP _{st} (Pa)								93			51			34	
		L _{wA} - dB(A)								48			42			40	
1500	416,7	$X_{0,3} X_{0,5} X_{1,0} (m)$						'				24,0	14,4	7,2	21,4	12,9	6,4
		∆P _{st} (Pa)	Ι,	, ,	,, v	Do	rtán ha	rizontol	00 0011	uno vit	.0000		74			49	
		L _{wA} - dB(A)	′	(_{0.3} , Χ _{0.5}	y A _{1.0}				ee pour de 0,3,				46			44	
1750	486,1	$X_{0,3} X_{0,5} X_{1,0} (m)$,	۸D			isother					28,0	16,8	8,4	25,0	15,0	7,5
		ΔP _{st} (Pa)	'i	∆P _{st} ™a			rte de d veau de		nce sor	nore			101			66	
		L _{wA} - dB(A)											50			47	
2000	555,6	$X_{0,3} X_{0,5} X_{1,0} (m)$													28,6	17,2	8,6
		ΔP _{st} (Pa)														87	
		L _{wA} - dB(A)														50	

Les données techniques figurant dans ce tableau sont le DF-47-NARROW sans plenums et component. Avec clapet de régulation il est recommandé la sélection avec une vitesse effective inférieure à 5 m/s.

Codification

Modelé	
- Wiodele	mouvement manuel
IC	intégrée sur conduit circulaire
CC	adaptation à gaine circulaire
<u> </u>	adaptation a game circulaire
Passage d'air	
15, 20, 30, 40 ó 50	passage d'air
Longueur	
1-9999	in mm
Composants	
· -	sans indiquer quoi que ce soit sans plénum ou sans mécanisme
TR	termoregulable
MT	motorisé
RFS-06	avec clapet RFS-06
PF	avec plénum fixe
PD	avec plénum démontable
G	avec ailettes directionnelles
Fixation	
MM	avec cadre de montage
Т	avec vis de fixation
PM	avec étrier de montage
Angle d'ouverture	
-	sans indiquer quoi que ce soit, angle de soufflage froide/chaleur sans ajustement
AF(-30°30°)	angle froide, d'environ ± 30°
AC(-30°30°)	angle chaleur, d'environ ± 30°
Finitions	
RAL 9010	peint en blanc brillant RAL9010
RAL	peint en RAL pour définir
KAL	peint en KAL pour definir

Exemple de codification:

DF-47-NARROW - 15 - 1500 - RFS-06 -T - AC -15° - RAL 9010

Diffuseur DF-47-NARROW manuel, passage d'air 15, longueur 1500 mm avec clapet RFS-06, vis de fixation et angle d'ouverture à la chaleur de -15°, peint en blanc brillant RAL9010.

CE CATALOGUE EST UNE PROPRIÉTÉ INDUSTRIELLE.

La reproduction partielle ou totale de son contenu est formellement interdite sans autorisation expresse et incontestable de KOOLAIR,S.A.

KOOLAIR, S.A.

Calle Urano, 26 Poligono industrial nº 2 – La Fuensanta 28936 Móstoles - Madrid - (España)

Tel: +34 91 645 00 33 Fax: +34 91 645 69 62 e-mail: info@koolair.com